Search results
Results from the WOW.Com Content Network
The Aristocrat Cipher is a type of monoalphabetic substitution cipher in which plaintext is replaced with ciphertext and encoded into assorted letters, numbers, and symbols based on a keyword. The formatting of these ciphers generally includes a title, letter frequency, keyword indicators, and the encoder's nom de plume . [ 1 ]
Sometimes values are reported without the normalizing denominator, for example 0.067 = 1.73/26 for English; such values may be called κ p ("kappa-plaintext") rather than IC, with κ r ("kappa-random") used to denote the denominator 1/c (which is the expected coincidence rate for a uniform distribution of the same alphabet, 0.0385=1/26 for ...
The book cipher is a type of homophonic cipher, one example being the Beale ciphers. This is a story of buried treasure that was described in 1819–21 by use of a ciphered text that was keyed to the Declaration of Independence. Here each ciphertext character was represented by a number.
The cipher illustrated here uses a left shift of 3, so that (for example) each occurrence of E in the plaintext becomes B in the ciphertext. In cryptography, a Caesar cipher, also known as Caesar's cipher, the shift cipher, Caesar's code, or Caesar shift, is one of the simplest and most widely known encryption techniques.
The affine cipher is a type of monoalphabetic substitution cipher, where each letter in an alphabet is mapped to its numeric equivalent, encrypted using a simple mathematical function, and converted back to a letter. The formula used means that each letter encrypts to one other letter, and back again, meaning the cipher is essentially a ...
The Atbash cipher is a particular type of monoalphabetic cipher formed by taking the alphabet (or abjad, syllabary, etc.) and mapping it to its reverse, so that the first letter becomes the last letter, the second letter becomes the second to last letter, and so on. For example, the Hebrew alphabet would work like this:
While solving a monoalphabetic substitution cipher is easy, solving even a simple code is difficult. Decrypting a coded message is a little like trying to translate a document written in a foreign language, with the task basically amounting to building up a "dictionary" of the codegroups and the plaintext words they represent.
The previous examples were all examples of monoalphabetic substitution ciphers, where just one cipher alphabet is used. It is also possible to have a polyalphabetic substitution cipher, where multiple cipher alphabets are used. The encoder would make up two or more cipher alphabets using whatever techniques they choose, and then encode their ...