Search results
Results from the WOW.Com Content Network
For a gas that is a mixture of two or more pure gases (air or natural gas, for example), the gas composition must be known before compressibility can be calculated. Alternatively, the compressibility factor for specific gases can be read from generalized compressibility charts [ 1 ] that plot Z {\displaystyle Z} as a function of pressure at ...
Carbon dioxide: 3.640 0.04267 Carbon disulfide: 11.77 0.07685 Carbon monoxide: 1.505 0.0398500 Carbon tetrachloride: 19.7483 0.1281 Chlorine: 6.579 0.05622 Chlorobenzene: 25.77 0.1453 Chloroethane: 11.05 0.08651 Chloromethane: 7.570 0.06483 Cyanogen: 7.769 0.06901 Cyclohexane: 23.11 0.1424 Cyclopropane [2] 8.34 0.0747 Decane [2] 52.74 0.3043 1 ...
According to van der Waals, the theorem of corresponding states (or principle/law of corresponding states) indicates that all fluids, when compared at the same reduced temperature and reduced pressure, have approximately the same compressibility factor and all deviate from ideal gas behavior to about the same degree. [1] [2]
The dashed lines represent parts of isotherms which are forbidden since the gradient would be positive, giving the gas in this region a negative compressibility. Above the critical point there exists a state of matter that is continuously connected with (can be transformed without phase transition into) both the liquid and the gaseous state.
The largest and the lowest solution are the gas and liquid reduced volume. In this situation, the Maxwell construction is sometimes used to model the pressure as a function of molar volume. The compressibility factor = / is often used to characterize non-ideal behavior. For the van der Waals equation in reduced form, this becomes
of formation, Δ f H o gas: −393.52 kJ/mol Standard molar entropy, S o gas: 213.79 J/(mol·K) ... Carbon dioxide liquid/vapor equilibrium thermodynamic data: Temp ...
In thermodynamics and fluid mechanics, the compressibility (also known as the coefficient of compressibility [1] or, if the temperature is held constant, the isothermal compressibility [2]) is a measure of the instantaneous relative volume change of a fluid or solid as a response to a pressure (or mean stress) change.
Many gases such as nitrogen, oxygen, hydrogen, noble gases, some heavier gases like carbon dioxide and mixtures such as air, can be treated as ideal gases within reasonable tolerances [2] over a considerable parameter range around standard temperature and pressure.