Search results
Results from the WOW.Com Content Network
The Spherical k-means clustering algorithm is suitable for textual data. [37] Hierarchical variants such as Bisecting k-means, [38] X-means clustering [39] and G-means clustering [40] repeatedly split clusters to build a hierarchy, and can also try to automatically determine the optimal number of clusters in a dataset.
In statistics and data mining, X-means clustering is a variation of k-means clustering that refines cluster assignments by repeatedly attempting subdivision, and keeping the best resulting splits, until a criterion such as the Akaike information criterion (AIC) or Bayesian information criterion (BIC) is reached. [5]
In data mining, k-means++ [1] [2] is an algorithm for choosing the initial values (or "seeds") for the k-means clustering algorithm. It was proposed in 2007 by David Arthur and Sergei Vassilvitskii, as an approximation algorithm for the NP-hard k-means problem—a way of avoiding the sometimes poor clusterings found by the standard k-means algorithm.
Variations of k-means often include such optimizations as choosing the best of multiple runs, but also restricting the centroids to members of the data set (k-medoids), choosing medians (k-medians clustering), choosing the initial centers less randomly (k-means++) or allowing a fuzzy cluster assignment (fuzzy c-means).
Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.. Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible.
The use of different algorithms leads to different results, but there is no single best approach for selecting the best algorithm, just as no algorithm offers any theoretical proof of its certainty. [1] One of the most frequently used techniques in geodemographic segmentation is the widely known k-means clustering algorithm. In fact most of the ...
Several of these models correspond to well-known heuristic clustering methods. For example, k-means clustering is equivalent to estimation of the EII clustering model using the classification EM algorithm. [8] The Bayesian information criterion (BIC) can be used to choose the best clustering model as well as the number of clusters. It can also ...
This image is part of an example of the K-means algorithm. This is the first step, where the points and centroids are randomly placed. ... K-means clustering; Global ...