enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fatigue limit - Wikipedia

    en.wikipedia.org/wiki/Fatigue_limit

    The fatigue limit or endurance limit is the stress level below which an infinite number of loading cycles can be applied to a material without causing fatigue failure. [1] Some metals such as ferrous alloys and titanium alloys have a distinct limit, [ 2 ] whereas others such as aluminium and copper do not and will eventually fail even from ...

  3. Goodman relation - Wikipedia

    en.wikipedia.org/wiki/Goodman_relation

    Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]

  4. Fatigue (material) - Wikipedia

    en.wikipedia.org/wiki/Fatigue_(material)

    For some materials, notably steel and titanium, there is a theoretical value for stress amplitude below which the material will not fail for any number of cycles, called a fatigue limit or endurance limit. [25] However, in practice, several bodies of work done at greater numbers of cycles suggest that fatigue limits do not exist for any metals.

  5. Paris' law - Wikipedia

    en.wikipedia.org/wiki/Paris'_law

    Paris' law (also known as the Paris–Erdogan equation) is a crack growth equation that gives the rate of growth of a fatigue crack. The stress intensity factor K {\displaystyle K} characterises the load around a crack tip and the rate of crack growth is experimentally shown to be a function of the range of stress intensity Δ K {\displaystyle ...

  6. Corrosion fatigue - Wikipedia

    en.wikipedia.org/wiki/Corrosion_fatigue

    Effect of corrosion on fatigue limits of steels. Corrosion fatigue in aqueous media is an electrochemical behavior. Fractures are initiated either by pitting or persistent slip bands. [3] Corrosion fatigue may be reduced by alloy additions, inhibition and cathodic protection, all of which reduce pitting. [4]

  7. Low-cycle fatigue - Wikipedia

    en.wikipedia.org/wiki/Low-cycle_fatigue

    Low cycle fatigue (LCF) has two fundamental characteristics: plastic deformation in each cycle; and low cycle phenomenon, in which the materials have finite endurance for this type of load. The term cycle refers to repeated applications of stress that lead to eventual fatigue and failure; low-cycle pertains to a long period between applications.

  8. Titanium - Wikipedia

    en.wikipedia.org/wiki/Titanium

    Like steel structures, those made from titanium have a fatigue limit that guarantees longevity in some applications. [19] The metal is a dimorphic allotrope of a hexagonal close packed α form that changes into a body-centered cubic (lattice) β form at 882 °C (1,620 °F).

  9. Titanium alloys - Wikipedia

    en.wikipedia.org/wiki/Titanium_alloys

    Titanium alloy in ingot form. Titanium alloys are alloys that contain a mixture of titanium and other chemical elements. Such alloys have very high tensile strength and toughness (even at extreme temperatures). They are light in weight, have extraordinary corrosion resistance and the ability to withstand extreme temperatures.