enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    More generally, a Markov chain is ergodic if there is a number N such that any state can be reached from any other state in any number of steps less or equal to a number N. In case of a fully connected transition matrix, where all transitions have a non-zero probability, this condition is fulfilled with N = 1.

  3. Kolmogorov's criterion - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov's_criterion

    Consider this figure depicting a section of a Markov chain with states i, j, k and l and the corresponding transition probabilities. Here Kolmogorov's criterion implies that the product of probabilities when traversing through any closed loop must be equal, so the product around the loop i to j to l to k returning to i must be equal to the loop the other way round,

  4. Markov Chains and Mixing Times - Wikipedia

    en.wikipedia.org/wiki/Markov_Chains_and_Mixing_Times

    A Markov chain is a stochastic process defined by a set of states and, for each state, a probability distribution on the states. Starting from an initial state, it follows a sequence of states where each state in the sequence is chosen randomly from the distribution associated with the previous state.

  5. Stochastic matrix - Wikipedia

    en.wikipedia.org/wiki/Stochastic_matrix

    If this process is applied repeatedly, the distribution converges to a stationary distribution for the Markov chain. [2]: 14–17 [16]: 116 Stochastic matrices and their product form a category, which is both a subcategory of the category of matrices and of the one of Markov kernels.

  6. Continuous-time Markov chain - Wikipedia

    en.wikipedia.org/wiki/Continuous-time_Markov_chain

    A continuous-time Markov chain (CTMC) is a continuous stochastic process in which, for each state, the process will change state according to an exponential random variable and then move to a different state as specified by the probabilities of a stochastic matrix.

  7. Examples of Markov chains - Wikipedia

    en.wikipedia.org/wiki/Examples_of_Markov_chains

    A finite-state machine can be used as a representation of a Markov chain. Assuming a sequence of independent and identically distributed input signals (for example, symbols from a binary alphabet chosen by coin tosses), if the machine is in state y at time n , then the probability that it moves to state x at time n + 1 depends only on the ...

  8. Kemeny's constant - Wikipedia

    en.wikipedia.org/wiki/Kemeny's_constant

    In probability theory, Kemeny’s constant is the expected number of time steps required for a Markov chain to transition from a starting state i to a random destination state sampled from the Markov chain's stationary distribution.

  9. Absorbing Markov chain - Wikipedia

    en.wikipedia.org/wiki/Absorbing_Markov_chain

    A basic property about an absorbing Markov chain is the expected number of visits to a transient state j starting from a transient state i (before being absorbed). This can be established to be given by the (i, j) entry of so-called fundamental matrix N, obtained by summing Q k for all k (from 0 to ∞).