enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logarithmic decrement - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_decrement

    The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.

  3. Damping - Wikipedia

    en.wikipedia.org/wiki/Damping

    The damping ratio is a system parameter, denoted by ζ ("zeta"), that can vary from undamped (ζ = 0), underdamped (ζ < 1) through critically damped (ζ = 1) to overdamped (ζ > 1). The behaviour of oscillating systems is often of interest in a diverse range of disciplines that include control engineering , chemical engineering , mechanical ...

  4. Shock response spectrum - Wikipedia

    en.wikipedia.org/wiki/Shock_response_spectrum

    Pick a frequency f, and assume that there is a hypothetical Single Degree of Freedom (SDOF) system with a damped natural frequency of f ; Calculate (by direct time-domain simulation) the maximum instantaneous absolute acceleration experienced by the mass element of your SDOF at any time during (or after) exposure to the shock in question.

  5. RLC circuit - Wikipedia

    en.wikipedia.org/wiki/RLC_circuit

    The driven frequency may be called the undamped resonance frequency or undamped natural frequency and the peak frequency may be called the damped resonance frequency or the damped natural frequency. The reason for this terminology is that the driven resonance frequency in a series or parallel resonant circuit has the value.

  6. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    The period and frequency are determined by the size of the mass m and the force constant k, while the amplitude and phase are determined by the starting position and velocity. The velocity and acceleration of a simple harmonic oscillator oscillate with the same frequency as the position, but with shifted phases. The velocity is maximal for zero ...

  7. Q factor - Wikipedia

    en.wikipedia.org/wiki/Q_factor

    The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...

  8. Settling time - Wikipedia

    en.wikipedia.org/wiki/Settling_time

    Settling time depends on the system response and natural frequency. The settling time for a second order , underdamped system responding to a step response can be approximated if the damping ratio ζ ≪ 1 {\displaystyle \zeta \ll 1} by T s = − ln ⁡ ( tolerance fraction ) damping ratio × natural freq {\displaystyle T_{s}=-{\frac {\ln ...

  9. Root locus analysis - Wikipedia

    en.wikipedia.org/wiki/Root_locus_analysis

    In addition to determining the stability of the system, the root locus can be used to design the damping ratio and natural frequency (ω n) of a feedback system. Lines of constant damping ratio can be drawn radially from the origin and lines of constant natural frequency can be drawn as arccosine whose center points coincide with the origin.