Search results
Results from the WOW.Com Content Network
Sharkovskii's theorem does not immediately apply to dynamical systems on other topological spaces. It is easy to find a circle map with periodic points of period 3 only: take a rotation by 120 degrees, for example. But some generalizations are possible, typically involving the mapping class group of the space minus a periodic orbit.
Upload file; Search. Search. Appearance. ... Download as PDF; Printable version ... In control engineering, a discrete-event dynamic system (DEDS) is a discrete-state ...
A discrete dynamical system, discrete-time dynamical system is a tuple (T, M, Φ), where M is a manifold locally diffeomorphic to a Banach space, and Φ is a function. When T is taken to be the integers, it is a cascade or a map. If T is restricted to the non-negative integers we call the system a semi-cascade. [14]
Dynamical systems theory and chaos theory deal with the long-term qualitative behavior of dynamical systems.Here, the focus is not on finding precise solutions to the equations defining the dynamical system (which is often hopeless), but rather to answer questions like "Will the system settle down to a steady state in the long term, and if so, what are the possible steady states?", or "Does ...
Download as PDF; Printable version; ... Chaotic maps often occur in the study of dynamical systems. ... 2D Lorenz system [1] discrete: real: 2: 1:
The theorem states that the behaviour of a dynamical system in a domain near a hyperbolic equilibrium point is qualitatively the same as the behaviour of its linearization near this equilibrium point, where hyperbolicity means that no eigenvalue of the linearization has real part equal to zero. Therefore, when dealing with such dynamical ...
Conley's decomposition is characterized by a function known as complete Lyapunov function. Unlike traditional Lyapunov functions that are used to assert the stability of an equilibrium point (or a fixed point) and can be defined only on the basin of attraction of the corresponding attractor, complete Lyapunov functions must be defined on the whole phase-portrait.
A Markov partition in mathematics is a tool used in dynamical systems theory, allowing the methods of symbolic dynamics to be applied to the study of hyperbolic dynamics.By using a Markov partition, the system can be made to resemble a discrete-time Markov process, with the long-term dynamical characteristics of the system represented as a Markov shift.