enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sharkovskii's theorem - Wikipedia

    en.wikipedia.org/wiki/Sharkovskii's_theorem

    Sharkovskii's theorem does not immediately apply to dynamical systems on other topological spaces. It is easy to find a circle map with periodic points of period 3 only: take a rotation by 120 degrees, for example. But some generalizations are possible, typically involving the mapping class group of the space minus a periodic orbit.

  3. Discrete event dynamic system - Wikipedia

    en.wikipedia.org/wiki/Discrete_event_dynamic_system

    Upload file; Search. Search. Appearance. ... Download as PDF; Printable version ... In control engineering, a discrete-event dynamic system (DEDS) is a discrete-state ...

  4. Dynamical system - Wikipedia

    en.wikipedia.org/wiki/Dynamical_system

    A discrete dynamical system, discrete-time dynamical system is a tuple (T, M, Φ), where M is a manifold locally diffeomorphic to a Banach space, and Φ is a function. When T is taken to be the integers, it is a cascade or a map. If T is restricted to the non-negative integers we call the system a semi-cascade. [14]

  5. Dynamical systems theory - Wikipedia

    en.wikipedia.org/wiki/Dynamical_systems_theory

    Dynamical systems theory and chaos theory deal with the long-term qualitative behavior of dynamical systems.Here, the focus is not on finding precise solutions to the equations defining the dynamical system (which is often hopeless), but rather to answer questions like "Will the system settle down to a steady state in the long term, and if so, what are the possible steady states?", or "Does ...

  6. List of chaotic maps - Wikipedia

    en.wikipedia.org/wiki/List_of_chaotic_maps

    Download as PDF; Printable version; ... Chaotic maps often occur in the study of dynamical systems. ... 2D Lorenz system [1] discrete: real: 2: 1:

  7. Hartman–Grobman theorem - Wikipedia

    en.wikipedia.org/wiki/Hartman–Grobman_theorem

    The theorem states that the behaviour of a dynamical system in a domain near a hyperbolic equilibrium point is qualitatively the same as the behaviour of its linearization near this equilibrium point, where hyperbolicity means that no eigenvalue of the linearization has real part equal to zero. Therefore, when dealing with such dynamical ...

  8. Conley's fundamental theorem of dynamical systems - Wikipedia

    en.wikipedia.org/wiki/Conley's_fundamental...

    Conley's decomposition is characterized by a function known as complete Lyapunov function. Unlike traditional Lyapunov functions that are used to assert the stability of an equilibrium point (or a fixed point) and can be defined only on the basin of attraction of the corresponding attractor, complete Lyapunov functions must be defined on the whole phase-portrait.

  9. Markov partition - Wikipedia

    en.wikipedia.org/wiki/Markov_partition

    A Markov partition in mathematics is a tool used in dynamical systems theory, allowing the methods of symbolic dynamics to be applied to the study of hyperbolic dynamics.By using a Markov partition, the system can be made to resemble a discrete-time Markov process, with the long-term dynamical characteristics of the system represented as a Markov shift.