Search results
Results from the WOW.Com Content Network
Inhaled air is by volume 78% nitrogen, 20.95% oxygen and small amounts of other gases including argon, carbon dioxide, neon, helium, and hydrogen. [18] The gas exhaled is 4% to 5% by volume of carbon dioxide, about a hundredfold increase over the inhaled amount. The volume of oxygen is reduced by about a quarter, 4% to 5%, of total air volume.
Nitrogen dioxide poisoning is the illness resulting from the toxic effect of nitrogen dioxide (NO 2). It usually occurs after the inhalation of the gas beyond the threshold limit value. [1] Nitrogen dioxide is reddish-brown with a very harsh smell at high concentrations, at lower concentrations it is colorless but may still have a harsh odour.
A breathing gas is a mixture of gaseous chemical elements and compounds used for respiration. Air is the most common and only natural breathing gas. Other mixtures of gases, or pure oxygen, are also used in breathing equipment and enclosed habitats such as scuba equipment, surface supplied diving equipment, recompression chambers, high-altitude mountaineering, high-flying aircraft, submarines ...
Nitric oxide (nitrogen monoxide) is a molecule and chemical compound with chemical formula of N O. In mammals including humans, nitric oxide is a signaling molecule involved in several physiological and pathological processes. [1] It is a powerful vasodilator with a half-life of a few seconds in the blood.
One of several nitrogen oxides, nitrogen dioxide is a reddish-brown gas. It is a paramagnetic , bent molecule with C 2v point group symmetry . Industrially, NO 2 is an intermediate in the synthesis of nitric acid , millions of tons of which are produced each year, primarily for the production of fertilizers .
An example of the ecological importance of anaerobic respiration is the use of nitrate as a terminal electron acceptor, or dissimilatory denitrification, which is the main route by which fixed nitrogen is returned to the atmosphere as molecular nitrogen gas. [3] The denitrification process is also very important in host-microbe interactions.
The two foremost reasons for use of mixed breathing gases are the reduction of nitrogen partial pressure by dilution with oxygen, to make nitrox mixtures, to reduce nitrogen uptake during pressure exposure and accelerate nitrogen elimination during decompression, and the substitution of helium (and occasionally other gases) for the nitrogen to ...
The term asphyxiation is often mistakenly associated with the strong desire to breathe that occurs if breathing is prevented. This desire is stimulated from increasing levels of carbon dioxide. However, asphyxiant gases may displace carbon dioxide along with oxygen, preventing the victim from feeling short of breath.