Search results
Results from the WOW.Com Content Network
U-Net was created by Olaf Ronneberger, Philipp Fischer, Thomas Brox in 2015 and reported in the paper "U-Net: Convolutional Networks for Biomedical Image Segmentation". [1] It is an improvement and development of FCN: Evan Shelhamer, Jonathan Long, Trevor Darrell (2014).
In digital image processing and computer vision, image segmentation is the process of partitioning a digital image into multiple image segments, also known as image regions or image objects (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to ...
Caffe supports many different types of deep learning architectures geared towards image classification and image segmentation. It supports CNN, RCNN, LSTM and fully-connected neural network designs. [8] Caffe supports GPU- and CPU-based acceleration computational kernel libraries such as Nvidia cuDNN and Intel MKL. [9] [10]
Region-based Convolutional Neural Networks (R-CNN) are a family of machine learning models for computer vision, and specifically object detection and localization. [1] The original goal of R-CNN was to take an input image and produce a set of bounding boxes as output, where each bounding box contains an object and also the category (e.g. car or ...
Deep learning has been shown to produce competitive results in medical application such as cancer cell classification, lesion detection, organ segmentation and image enhancement. [ 230 ] [ 231 ] Modern deep learning tools demonstrate the high accuracy of detecting various diseases and the helpfulness of their use by specialists to improve the ...
SqueezeNet was originally described in SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. [1] AlexNet is a deep neural network that has 240 MB of parameters, and SqueezeNet has just 5 MB of parameters.
The term zero-shot learning itself first appeared in the literature in a 2009 paper from Palatucci, Hinton, Pomerleau, and Mitchell at NIPS’09. [5] This terminology was repeated later in another computer vision paper [6] and the term zero-shot learning caught on, as a take-off on one-shot learning that was introduced in computer vision years ...
MONAI Core image segmentation example. Pipeline from training data retrieval through model implementation, training, and optimization to model inference. Within MONAI Core, researchers can find a collection of tools and functionalities for dataset processing, loading, Deep learning (DL) model implementation, and evaluation. These utilities ...