enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    In dilute aqueous solutions the diffusion coefficients of most ions are similar and have values that at room temperature are in the range of (0.6–2) × 10 −9 m 2 /s. For biological molecules the diffusion coefficients normally range from 10 −10 to 10 −11 m 2 /s.

  3. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    The temperature approaches a linear function because that is the stable solution of the equation: wherever temperature has a nonzero second spatial derivative, the time derivative is nonzero as well. The heat equation implies that peaks ( local maxima ) of u {\displaystyle u} will be gradually eroded down, while depressions ( local minima ...

  4. Mass diffusivity - Wikipedia

    en.wikipedia.org/wiki/Mass_diffusivity

    The higher the diffusivity (of one substance with respect to another), the faster they diffuse into each other. Typically, a compound's diffusion coefficient is ~10,000× as great in air as in water. Carbon dioxide in air has a diffusion coefficient of 16 mm 2 /s, and in water its diffusion coefficient is 0.0016 mm 2 /s. [1] [2]

  5. Molecular diffusion - Wikipedia

    en.wikipedia.org/wiki/Molecular_diffusion

    The self-diffusion coefficient of neat water is: 2.299·10 −9 m 2 ·s −1 at 25 °C and 1.261·10 −9 m 2 ·s −1 at 4 °C. [2] Chemical diffusion occurs in a presence of concentration (or chemical potential) gradient and it results in net transport of mass. This is the process described by the diffusion equation.

  6. Diffusion equation - Wikipedia

    en.wikipedia.org/wiki/Diffusion_equation

    If the diffusion coefficient depends on the density then the equation is nonlinear, otherwise it is linear. The equation above applies when the diffusion coefficient is isotropic; in the case of anisotropic diffusion, D is a symmetric positive definite matrix, and the equation is written (for three dimensional diffusion) as:

  7. Randles–Sevcik equation - Wikipedia

    en.wikipedia.org/wiki/Randles–Sevcik_equation

    D = diffusion coefficient in cm 2 /s; C = concentration in mol/cm 3; ν = scan rate in V/s; R = Gas constant in J K −1 mol −1; T = temperature in K; The constant with a value of 2.69×10 5 has units of C mol −1 V −1/2; For novices in electrochemistry, the predictions of this equation appear counter-intuitive, i.e. that i p increases at ...

  8. Maxwell–Stefan diffusion - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Stefan_diffusion

    The Maxwell–Stefan diffusion (or Stefan–Maxwell diffusion) is a model for describing diffusion in multicomponent systems. The equations that describe these transport processes have been developed independently and in parallel by James Clerk Maxwell [1] for dilute gases and Josef Stefan [2] for liquids. The Maxwell–Stefan equation is [3 ...

  9. Thermal conduction - Wikipedia

    en.wikipedia.org/wiki/Thermal_conduction

    This equation shows that the temperature decreases exponentially over time, with the rate governed by the properties of the material and the heat transfer coefficient. [7] The heat transfer coefficient , h , is measured in W m 2 K {\displaystyle \mathrm {\frac {W}{m^{2}K}} } , and represents the transfer of heat at an interface between two ...