enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    The angular momentum of m is proportional to the perpendicular component v ⊥ of the velocity, or equivalently, to the perpendicular distance r ⊥ from the origin. Angular momentum is a vector quantity (more precisely, a pseudovector) that represents the product of a body's rotational inertia and rotational velocity (in radians/sec) about a ...

  3. Absolute angular momentum - Wikipedia

    en.wikipedia.org/wiki/Absolute_angular_momentum

    Absolute angular momentum sums the angular momentum of a particle or fluid parcel in a relative coordinate system and the angular momentum of that relative coordinate system. Meteorologists typically express the three vector components of velocity v = ( u , v , w ) (eastward, northward, and upward).

  4. Angular mechanics - Wikipedia

    en.wikipedia.org/wiki/Angular_mechanics

    In physics, angular mechanics is a field of mechanics which studies rotational movement. It studies things such as angular momentum , angular velocity , and torque . It also studies more advanced things such as Coriolis force [ 1 ] and Angular aerodynamics .

  5. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Angular momenta of a classical object. Left: intrinsic "spin" angular momentum S is really orbital angular momentum of the object at every point, right: extrinsic orbital angular momentum L about an axis, top: the moment of inertia tensor I and angular velocity ω (L is not always parallel to ω) [6] bottom: momentum p and its radial position r ...

  6. König's theorem (kinetics) - Wikipedia

    en.wikipedia.org/wiki/König's_theorem_(kinetics)

    where is the mass of the rigid body; ¯ is the velocity of the center of mass of the rigid body, as viewed by an observer fixed in an inertial frame N; ¯ is the angular momentum of the rigid body about the center of mass, also taken in the inertial frame N; and is the angular velocity of the rigid body R relative to the inertial frame N. [3]

  7. Poinsot's ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Poinsot's_ellipsoid

    The law of conservation of angular momentum states that in the absence of applied torques, the angular momentum vector is conserved in an inertial reference frame, so =. The angular momentum vector L {\displaystyle \mathbf {L} } can be expressed in terms of the moment of inertia tensor I {\displaystyle \mathbf {I} } and the angular velocity ...

  8. Balance of angular momentum - Wikipedia

    en.wikipedia.org/wiki/Balance_of_angular_momentum

    In 1744, Euler was the first to use the principles of momentum and of angular momentum to state the equations of motion of a system. In 1750, in his treatise "Discovery of a new principle of mechanics" [ 3 ] he published the Euler's equations of rigid body dynamics , which today are derived from the balance of angular momentum, which Euler ...

  9. Constant of motion - Wikipedia

    en.wikipedia.org/wiki/Constant_of_motion

    Examples of integrals of motion are the angular momentum vector, =, or a Hamiltonian without time dependence, such as (,) = + (). An example of a function that is a constant of motion but not an integral of motion would be the function C ( x , v , t ) = x − v t {\displaystyle C(x,v,t)=x-vt} for an object moving at a constant speed in one ...