Search results
Results from the WOW.Com Content Network
"As Mrs. LADD·FRANKLlN has truly remarked (BALDWIN, Dictionary of Philosophy and Psychology, article "Laws of Thought" [2]), the principle of contradiction is not sufficient to define contradictories; the principle of excluded middle must be added which equally deserves the name of principle of contradiction.
If X is any set, then the power set of X (the family of all subsets of X) forms a ring of sets in either sense.. If (X, ≤) is a partially ordered set, then its upper sets (the subsets of X with the additional property that if x belongs to an upper set U and x ≤ y, then y must also belong to U) are closed under both intersections and unions.
In probability theory, Boole's inequality, also known as the union bound, says that for any finite or countable set of events, the probability that at least one of the events happens is no greater than the sum of the probabilities of the individual events. This inequality provides an upper bound on the probability of occurrence of at least one ...
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
This rule allows one to express a joint probability in terms of only conditional probabilities. [4] The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.
In probability theory, an event is a set of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]
In logic, two propositions and are mutually exclusive if it is not logically possible for them to be true at the same time; that is, () is a tautology. To say that more than two propositions are mutually exclusive, depending on the context, means either 1. "() () is a tautology" (it is not logically possible for more than one proposition to be true) or 2. "() is a tautology" (it is not ...
An important example, especially in the theory of probability, is the Borel algebra on the set of real numbers.It is the algebra on which the Borel measure is defined. . Given a real random variable defined on a probability space, its probability distribution is by definition also a measure on the Borel a