Ads
related to: how to solve summation problems with steps
Search results
Results from the WOW.Com Content Network
The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset S {\displaystyle S} of integers and a target-sum T {\displaystyle T} , and the question is to decide whether any subset of the integers sum to precisely T {\displaystyle T} . [ 1 ]
How to Solve It suggests the following steps when solving a mathematical problem: . First, you have to understand the problem. [2]After understanding, make a plan. [3]Carry out the plan.
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total. Beside numbers, other types of values can be summed as well: functions , vectors , matrices , polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
Summation by parts is frequently used to prove Abel's theorem and Dirichlet's test. One can also use this technique to prove Abel's test : If ∑ n b n {\textstyle \sum _{n}b_{n}} is a convergent series , and a n {\displaystyle a_{n}} a bounded monotone sequence , then S N = ∑ n = 0 N a n b n {\textstyle S_{N}=\sum _{n=0}^{N}a_{n}b_{n ...
The subset sum problem is a special case of the decision and 0-1 problems where each kind of item, the weight equals the value: =. In the field of cryptography, the term knapsack problem is often used to refer specifically to the subset sum problem. The subset sum problem is one of Karp's 21 NP-complete problems. [2]
The algorithm performs summation with two accumulators: sum holds the sum, and c accumulates the parts not assimilated into sum, to nudge the low-order part of sum the next time around. Thus the summation proceeds with "guard digits" in c , which is better than not having any, but is not as good as performing the calculations with double the ...
Abel's summation formula can be generalized to the case where is only assumed to be continuous if the integral is interpreted as a Riemann–Stieltjes integral: ∑ x < n ≤ y a n ϕ ( n ) = A ( y ) ϕ ( y ) − A ( x ) ϕ ( x ) − ∫ x y A ( u ) d ϕ ( u ) . {\displaystyle \sum _{x<n\leq y}a_{n}\phi (n)=A(y)\phi (y)-A(x)\phi (x)-\int _{x ...
In contrast, direct methods attempt to solve the problem by a finite sequence of operations. In the absence of rounding errors , direct methods would deliver an exact solution (for example, solving a linear system of equations A x = b {\displaystyle A\mathbf {x} =\mathbf {b} } by Gaussian elimination ).
Ads
related to: how to solve summation problems with steps