enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    Arbitrary-precision arithmetic can also be used to avoid overflow, which is an inherent limitation of fixed-precision arithmetic. Similar to an automobile's odometer display which may change from 99999 to 00000, a fixed-precision integer may exhibit wraparound if numbers grow too large to represent at the fixed level of precision.

  3. Qalculate! - Wikipedia

    en.wikipedia.org/wiki/Qalculate!

    Qalculate! supports common mathematical functions and operations, multiple bases, autocompletion, complex numbers, infinite numbers, arrays and matrices, variables, mathematical and physical constants, user-defined functions, symbolic derivation and integration, solving of equations involving unknowns, uncertainty propagation using interval arithmetic, plotting using Gnuplot, unit and currency ...

  4. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Hilbert matrix — example of a matrix which is extremely ill-conditioned (and thus difficult to handle) Wilkinson matrix — example of a symmetric tridiagonal matrix with pairs of nearly, but not exactly, equal eigenvalues; Convergent matrix — square matrix whose successive powers approach the zero matrix; Algorithms for matrix multiplication:

  5. Gauss–Kronrod quadrature formula - Wikipedia

    en.wikipedia.org/wiki/Gauss–Kronrod_quadrature...

    Routines for Gauss–Kronrod quadrature are provided by the QUADPACK library, the GNU Scientific Library, the NAG Numerical Libraries, R, [2] the C++ library Boost., [3] as well as the Julia package QuadGK.jl [4] (which can compute Gauss–Kronrod formulas to arbitrary precision).

  6. Spigot algorithm - Wikipedia

    en.wikipedia.org/wiki/Spigot_algorithm

    A variant of the spigot approach uses an algorithm which can be used to compute a single arbitrary digit of the transcendental without computing the preceding digits: an example is the Bailey–Borwein–Plouffe formula, a digit extraction algorithm for π which produces base 16 digits. The inevitable truncation of the underlying infinite ...

  7. PARI/GP - Wikipedia

    en.wikipedia.org/wiki/PARI/GP

    PARI/GP performs arbitrary precision calculations (e.g., the significand can be millions of digits long—and billions of digits on 64-bit machines). It can compute factorizations, perform elliptic curve computations and perform algebraic number theory calculations.

  8. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    Programming languages that support arbitrary precision computations, either built-in, or in the standard library of the language: Ada: the upcoming Ada 202x revision adds the Ada.Numerics.Big_Numbers.Big_Integers and Ada.Numerics.Big_Numbers.Big_Reals packages to the standard library, providing arbitrary precision integers and real numbers.

  9. Kahan summation algorithm - Wikipedia

    en.wikipedia.org/wiki/Kahan_summation_algorithm

    Another alternative is to use arbitrary-precision arithmetic, which in principle need no rounding at all with a cost of much greater computational effort. A way of performing correctly rounded sums using arbitrary precision is to extend adaptively using multiple floating-point components.