enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Isovolumetric contraction - Wikipedia

    en.wikipedia.org/wiki/Isovolumetric_contraction

    The isovolumetric contraction phase lasts about 0.05 seconds, [1] but this short period of time is enough to build up a sufficiently high pressure that eventually overcomes that of the aorta and the pulmonary artery upon opening of the semilunar valves. This process, therefore, helps maintain the correct unidirectional flow of blood through the ...

  3. Cardiac cycle - Wikipedia

    en.wikipedia.org/wiki/Cardiac_cycle

    This is the ejection stage of the cardiac cycle; it is depicted (see circular diagram) as the ventricular systole–first phase followed by the ventricular systole–second phase. [2] After ventricular pressures fall below their peak(s) and below those in the trunks of the aorta and pulmonary arteries, the aortic and pulmonary valves close ...

  4. Systole - Wikipedia

    en.wikipedia.org/wiki/Systole

    Electrical waves track a systole (a contraction) of the heart. The end-point of the P wave depolarization is the start-point of the atrial stage of systole. The ventricular stage of systole begins at the R peak of the QRS wave complex; the T wave indicates the end of ventricular contraction, after which ventricular relaxation (ventricular diastole) begins.

  5. Cardiac physiology - Wikipedia

    en.wikipedia.org/wiki/Cardiac_physiology

    Consequently, this initial phase of ventricular systole is known as isovolumic contraction, also called isovolumetric contraction. [1] In the second phase of ventricular systole, the ventricular ejection phase, the contraction of the ventricular muscle has raised the pressure within the ventricle to the point that it is greater than the ...

  6. Cardiac action potential - Wikipedia

    en.wikipedia.org/wiki/Cardiac_action_potential

    The standard model used to understand the cardiac action potential is that of the ventricular myocyte. Outlined below are the five phases of the ventricular myocyte action potential, with reference also to the SAN action potential. Figure 2a: Ventricular action potential (left) and sinoatrial node action potential (right) waveforms.

  7. Cardiac pacemaker - Wikipedia

    en.wikipedia.org/wiki/Cardiac_pacemaker

    There are three main stages in the generation of an action potential in a pacemaker cell. Since the stages are analogous to contraction of cardiac muscle cells, they have the same naming system. This can lead to some confusion as phases one and two are absent, leaving only phases zero, three, and four.

  8. Ventricle (heart) - Wikipedia

    en.wikipedia.org/wiki/Ventricle_(heart)

    The left ventricular muscle must relax and contract quickly and be able to increase or lower its pumping capacity under the control of the nervous system. In the diastolic phase, it has to relax very quickly after each contraction so as to quickly fill with the oxygenated blood flowing from the pulmonary veins. Likewise in the systolic phase ...

  9. Frank–Starling law - Wikipedia

    en.wikipedia.org/wiki/Frank–Starling_law

    Since the next ventricular contraction occurs at its regular time, the filling time for the LV increases, causing an increased LV end-diastolic volume. Due to the Frank–Starling mechanism, the next ventricular contraction is more forceful, leading to the ejection of the larger than normal volume of blood, and bringing the LV end-systolic ...