Search results
Results from the WOW.Com Content Network
Rigor is a cornerstone quality of mathematics, and can play an important role in preventing mathematics from degenerating into fallacies. well-behaved An object is well-behaved (in contrast with being Pathological ) if it satisfies certain prevailing regularity properties, or if it conforms to mathematical intuition (even though intuition can ...
In mathematics, a property is any characteristic that applies to a given set. [1] Rigorously, a property p defined for all elements of a set X is usually defined as a function p: X → {true, false}, that is true whenever the property holds; or, equivalently, as the subset of X for which p holds; i.e. the set {x | p(x) = true}; p is its indicator function.
Adherent point, a point x in topological space X such that every open set containing x contains at least one point of a subset A; Condensation point, any point p of a subset S of a topological space, such that every open neighbourhood of p contains uncountably many points of S
Mathematics is a broad subject that is commonly divided in many areas or branches that may be defined by their objects of study, by the used methods, or by both. For example, analytic number theory is a subarea of number theory devoted to the use of methods of analysis for the study of natural numbers. This glossary is alphabetically sorted.
Elementary mathematics, also known as primary or secondary school mathematics, is the study of mathematics topics that are commonly taught at the primary or secondary school levels around the world. It includes a wide range of mathematical concepts and skills, including number sense , algebra , geometry , measurement , and data analysis .
Sets can themselves be elements. For example, consider the set = {,, {,}}. The elements of B are not 1, 2, 3, and 4. Rather, there are only three elements of B, namely the numbers 1 and 2, and the set {,}. The elements of a set can be anything.
A sequence is an ordered list. Like a set, it contains members (also called elements, or terms). Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Most precisely, a sequence can be defined as a function whose domain is a countable totally ordered set, such as the natural ...
Mathematical constructivism asserts that it is necessary to find (or "construct") a specific example of a mathematical object in order to prove that an example exists. Contrastingly, in classical mathematics, one can prove the existence of a mathematical object without "finding" that object explicitly, by assuming its non-existence and then ...