enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Compressibility factor - Wikipedia

    en.wikipedia.org/wiki/Compressibility_factor

    In thermodynamics, the compressibility factor (Z), also known as the compression factor or the gas deviation factor, describes the deviation of a real gas from ideal gas behaviour. It is simply defined as the ratio of the molar volume of a gas to the molar volume of an ideal gas at the same temperature and pressure .

  3. Compressibility - Wikipedia

    en.wikipedia.org/wiki/Compressibility

    The compressibility factor is defined as = where p is the pressure of the gas, T is its temperature, and is its molar volume, all measured independently of one another. In the case of an ideal gas, the compressibility factor Z is equal to unity, and the familiar ideal gas law is recovered:

  4. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  5. Limiting oxygen concentration - Wikipedia

    en.wikipedia.org/wiki/Limiting_oxygen_concentration

    The limiting oxygen concentration (LOC), [1] also known as the minimum oxygen concentration (MOC), [2] is defined as the limiting concentration of oxygen below which combustion is not possible, independent of the concentration of fuel. It is expressed in units of volume percent of oxygen. The LOC varies with pressure and temperature.

  6. Real gas - Wikipedia

    en.wikipedia.org/wiki/Real_gas

    Where p is the pressure, T is the temperature, R the ideal gas constant, and V m the molar volume. a and b are parameters that are determined empirically for each gas, but are sometimes estimated from their critical temperature (T c) and critical pressure (p c) using these relations:

  7. Redlich–Kwong equation of state - Wikipedia

    en.wikipedia.org/wiki/Redlich–Kwong_equation_of...

    T c is the temperature at the critical point, and; P c is the pressure at the critical point. The Redlich–Kwong equation can also be represented as an equation for the compressibility factor of gas, as a function of temperature and pressure: [8]

  8. Volume (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Volume_(thermodynamics)

    In general, compressibility is defined as the relative volume change of a fluid or solid as a response to a pressure, and may be determined for substances in any phase. Similarly, thermal expansion is the tendency of matter to change in volume in response to a change in temperature.

  9. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    The laws of thermodynamics imply the following relations between these two heat capacities (Gaskell 2003:23): = = Here is the thermal expansion coefficient: = is the isothermal compressibility (the inverse of the bulk modulus):

  1. Related searches general compressibility factor chart for oxygen concentration and temperature

    oxygen concentration diagramhow to limit oxygen concentration
    oxygen concentration limits chartoxygen concentration below loc