enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Compressibility factor - Wikipedia

    en.wikipedia.org/wiki/Compressibility_factor

    In thermodynamics, the compressibility factor (Z), also known as the compression factor or the gas deviation factor, describes the deviation of a real gas from ideal gas behaviour. It is simply defined as the ratio of the molar volume of a gas to the molar volume of an ideal gas at the same temperature and pressure .

  3. Limiting oxygen concentration - Wikipedia

    en.wikipedia.org/wiki/Limiting_oxygen_concentration

    The limiting oxygen concentration (LOC), [1] also known as the minimum oxygen concentration (MOC), [2] is defined as the limiting concentration of oxygen below which combustion is not possible, independent of the concentration of fuel. It is expressed in units of volume percent of oxygen. The LOC varies with pressure and temperature.

  4. Compressibility - Wikipedia

    en.wikipedia.org/wiki/Compressibility

    The compressibility factor is defined as = where p is the pressure of the gas, T is its temperature, and is its molar volume, all measured independently of one another. In the case of an ideal gas, the compressibility factor Z is equal to unity, and the familiar ideal gas law is recovered:

  5. Volume (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Volume_(thermodynamics)

    In general, compressibility is defined as the relative volume change of a fluid or solid as a response to a pressure, and may be determined for substances in any phase. Similarly, thermal expansion is the tendency of matter to change in volume in response to a change in temperature.

  6. Useful conversions and formulas for air dispersion modeling

    en.wikipedia.org/wiki/Useful_conversions_and...

    For example, such a regulation might limit the concentration of NOx to 55 ppmv in a dry combustion exhaust gas corrected to 3 volume percent O 2. As another example, a regulation might limit the concentration of particulate matter to 0.1 grain per standard cubic foot (i.e., scf) of dry exhaust gas corrected to 12 volume percent CO 2.

  7. Theorem of corresponding states - Wikipedia

    en.wikipedia.org/wiki/Theorem_of_corresponding...

    According to van der Waals, the theorem of corresponding states (or principle/law of corresponding states) indicates that all fluids, when compared at the same reduced temperature and reduced pressure, have approximately the same compressibility factor and all deviate from ideal gas behavior to about the same degree. [1] [2]

  8. Standard cubic feet per minute - Wikipedia

    en.wikipedia.org/wiki/Standard_cubic_feet_per_minute

    where is in absolute pressure units and is in absolute temperature units (i.e., either kelvins or degrees Rankine). This is only valid when at a pressure and temperature close to standard conditions. For non-ideal gasses (most gasses) a compressibility factor "Z" is introduced to allow for non-ideality. To introduce the compressibility factor ...

  9. Viscosity models for mixtures - Wikipedia

    en.wikipedia.org/wiki/Viscosity_models_for_mixtures

    The general equation of state for a real gas is usually written as = = where the critical compressibility factor , which reflects the volumetric deviation of the real gases from the ideal gas, is also not easily accessible from laboratory experiments. However, critical pressure and critical temperature are more accessible from measurements.