Search results
Results from the WOW.Com Content Network
The distribution of a random variable X with distribution function F is said to have a long right tail [1] if for all t > 0, [> + >] =,or equivalently ¯ (+) ¯ (). This has the intuitive interpretation for a right-tailed long-tailed distributed quantity that if the long-tailed quantity exceeds some high level, the probability approaches 1 that it will exceed any other higher level.
A fat-tailed distribution is a probability distribution that exhibits a large skewness or kurtosis, relative to that of either a normal distribution or an exponential distribution. [ when defined as? ] In common usage, the terms fat-tailed and heavy-tailed are sometimes synonymous; fat-tailed is sometimes also defined as a subset of heavy-tailed.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
A two-tailed test applied to the normal distribution. A one-tailed test, showing the p-value as the size of one tail.. In statistical significance testing, a one-tailed test and a two-tailed test are alternative ways of computing the statistical significance of a parameter inferred from a data set, in terms of a test statistic.
Figure 1. An example of 1000 steps of a Lévy flight in two dimensions. The origin of the motion is at [0,0], the angular direction is uniformly distributed and the step size is distributed according to a Lévy (i.e. stable) distribution with α = 1 and β = 0 which is a Cauchy distribution. Note the presence of large jumps in location compared ...
In probability theory, the tail dependence of a pair of random variables is a measure of their comovements in the tails of the distributions. The concept is used in extreme value theory . Random variables that appear to exhibit no correlation can show tail dependence in extreme deviations.
AOL latest headlines, entertainment, sports, articles for business, health and world news.
The definition ensures (roughly speaking) that if the distribution is itself exponentail, or has a lighter tail then the limit is finite, so not a heavy distribution. But a distribution such as a Pareto where the tail distribution is a polynomial, then the limit will be infinite, and by the definition it will then be a heavy tailed distribution.