Search results
Results from the WOW.Com Content Network
Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction .
A simple interactive tutorial on electromagnetic induction (click and drag magnet back and forth) National High Magnetic Field Laboratory; Roberto Vega. Induction: Faraday's law and Lenz's law – Highly animated lecture, with sound effects, Electricity and Magnetism course page; Notes from Physics and Astronomy HyperPhysics at Georgia State ...
The paradox appears a bit different from the lines of flux viewpoint: in Faraday's model of electromagnetic induction, a magnetic field consisted of imaginary lines of magnetic flux, similar to the lines that appear when iron filings are sprinkled on paper and held near a magnet. The EMF is proposed to be proportional to the rate of cutting ...
The history of electromagnetic induction, a facet of electromagnetism, began with observations of the ancients: electric charge or static electricity (rubbing silk on amber), electric current , and magnetic attraction . Understanding the unity of these forces of nature, and the scientific theory of electromagnetism was initiated and achieved ...
Ørsted investigated and found the physical law describing the magnetic field, now known as Ørsted's law. Ørsted's discovery was the first connection found between electricity and magnetism, and the first of two laws that link the two; the other is Faraday's law of induction.
The permeability of vacuum (also known as permeability of free space) is a physical constant, denoted μ 0. The SI units of μ are volt-seconds per ampere-meter, equivalently henry per meter. Typically μ would be a scalar, but for an anisotropic material, μ could be a second rank tensor.
As a consequence of Faraday's law of induction, any loop of wire that generates a changing magnetic field in time, also generates an electric field. This process takes energy out of the wire through the electromotive force (EMF). EMF is defined as electromagnetic work done on a unit charge when it has traveled one round of a conductive loop.
There are two main concepts to be taken from Faraday's Law that apply to the design of inductive discharge ignitions. One is that moving a wire through a magnetic field will induce an electric voltage and current in the wire, aka electromagnetic induction. The second is that current moving in a wire will induce a magnetic field around the wire.