enow.com Web Search

  1. Ads

    related to: quadrilateral proofs pdf problems questions printable free

Search results

  1. Results from the WOW.Com Content Network
  2. Varignon's theorem - Wikipedia

    en.wikipedia.org/wiki/Varignon's_theorem

    An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...

  3. Van Aubel's theorem - Wikipedia

    en.wikipedia.org/wiki/Van_Aubel's_theorem

    Follow the quadrilateral vertices in the same sequential direction and construct each square on the left hand side of each side of the given quadrilateral. The segments joining the centers of the squares constructed externally (or internally) to the quadrilateral over two opposite sides have been referred to as Van Aubel segments.

  4. Brahmagupta theorem - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta_theorem

    Proof of the theorem. We need to prove that AF = FD.We will prove that both AF and FD are in fact equal to FM.. To prove that AF = FM, first note that the angles FAM and CBM are equal, because they are inscribed angles that intercept the same arc of the circle (CD).

  5. Newton–Gauss line - Wikipedia

    en.wikipedia.org/wiki/Newton–Gauss_line

    The two complete quadrilaterals have a shared diagonal, EF. N lies on the Newton–Gauss line of both quadrilaterals. N is equidistant from G and H, since it is the circumcenter of the cyclic quadrilateral EGFH. If triangles GMP, HMQ are congruent, and it will follow that M lies on the perpendicular bisector of the line HG.

  6. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    This is not a cyclic quadrilateral. The equality never holds here, and is unequal in the direction indicated by Ptolemy's inequality. The equation in Ptolemy's theorem is never true with non-cyclic quadrilaterals. Ptolemy's inequality is an extension of this fact, and it is a more general form of Ptolemy's theorem.

  7. Miquel's theorem - Wikipedia

    en.wikipedia.org/wiki/Miquel's_theorem

    The circumcircles of all four triangles of a complete quadrilateral meet at a point M. [7] In the diagram above these are ∆ABF, ∆CDF, ∆ADE and ∆BCE. This result was announced, in two lines, by Jakob Steiner in the 1827/1828 issue of Gergonne's Annales de Mathématiques, [8] but a detailed proof was given by Miquel. [7]

  8. Pitot theorem - Wikipedia

    en.wikipedia.org/wiki/Pitot_theorem

    Pitot's theorem states that, for these quadrilaterals, the two sums of lengths of opposite sides are the same. Both sums of lengths equal the semiperimeter of the quadrilateral. [2] The converse implication is also true: whenever a convex quadrilateral has pairs of opposite sides with the same sums of lengths, it has an inscribed circle ...

  9. Newton's theorem (quadrilateral) - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem...

    Newton's theorem can easily be derived from Anne's theorem considering that in tangential quadrilaterals the combined lengths of opposite sides are equal (Pitot theorem: a + c = b + d). According to Anne's theorem, showing that the combined areas of opposite triangles PAD and PBC and the combined areas of triangles PAB and PCD are equal is ...

  1. Ads

    related to: quadrilateral proofs pdf problems questions printable free