enow.com Web Search

  1. Ads

    related to: strong duality theorems in calculus worksheet 2

Search results

  1. Results from the WOW.Com Content Network
  2. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    The max-flow min-cut theorem is a special case of the strong duality theorem: flow-maximization is the primal LP, and cut-minimization is the dual LP. See Max-flow min-cut theorem#Linear program formulation. Other graph-related theorems can be proved using the strong duality theorem, in particular, Konig's theorem. [9]

  3. Fenchel–Moreau theorem - Wikipedia

    en.wikipedia.org/wiki/Fenchel–Moreau_theorem

    A function that is not lower semi-continuous.By the Fenchel-Moreau theorem, this function is not equal to its biconjugate.. In convex analysis, the Fenchel–Moreau theorem (named after Werner Fenchel and Jean Jacques Moreau) or Fenchel biconjugation theorem (or just biconjugation theorem) is a theorem which gives necessary and sufficient conditions for a function to be equal to its biconjugate.

  4. Strong duality - Wikipedia

    en.wikipedia.org/wiki/Strong_duality

    Under certain conditions (called "constraint qualification"), if a problem is polynomial-time solvable, then it has strong duality (in the sense of Lagrangian duality). It is an open question whether the opposite direction also holds, that is, if strong duality implies polynomial-time solvability. [3]

  5. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Weak duality — dual solution gives a bound on the primal solution; Strong duality — primal and dual solutions are equivalent; Shadow price; Dual cone and polar cone; Duality gap — difference between primal and dual solution; Fenchel's duality theorem — relates minimization problems with maximization problems of convex conjugates

  6. Duality (optimization) - Wikipedia

    en.wikipedia.org/wiki/Duality_(optimization)

    The duality gap is zero if and only if strong duality holds. Otherwise the gap is strictly positive and weak duality holds. [5] In computational optimization, another "duality gap" is often reported, which is the difference in value between any dual solution and the value of a feasible but suboptimal iterate for the primal problem.

  7. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    Theorem — (sufficiency) If there exists a solution to the primal problem, a solution (,) to the dual problem, such that together they satisfy the KKT conditions, then the problem pair has strong duality, and , (,) is a solution pair to the primal and dual problems.

  8. Duality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Duality_(mathematics)

    A set C (blue) and its dual cone C * (red).. A duality in geometry is provided by the dual cone construction. Given a set of points in the plane (or more generally points in ), the dual cone is defined as the set consisting of those points (,) satisfying + for all points (,) in , as illustrated in the diagram.

  9. Slater's condition - Wikipedia

    en.wikipedia.org/wiki/Slater's_condition

    In mathematics, Slater's condition (or Slater condition) is a sufficient condition for strong duality to hold for a convex optimization problem, named after Morton L. Slater. [1] Informally, Slater's condition states that the feasible region must have an interior point (see technical details below).

  1. Ads

    related to: strong duality theorems in calculus worksheet 2