Search results
Results from the WOW.Com Content Network
This is an accepted version of this page This is the latest accepted revision, reviewed on 19 December 2024. Cell division producing haploid gametes For the figure of speech, see Meiosis (figure of speech). For the process whereby cell nuclei divide to produce two copies of themselves, see Mitosis. For excessive constriction of the pupils, see Miosis. For the parasitic infestation, see Myiasis ...
In the first stage of sexual reproduction, meiosis, the number of chromosomes is reduced from a diploid number (2n) to a haploid number (n). During fertilisation, haploid gametes come together to form a diploid zygote, and the original number of chromosomes is restored.
Ndt80 is a meiosis-specific transcription factor required for successful completion of meiosis and spore formation. [17] The protein recognizes and binds to the middle sporulation element (MSE) 5'-C[AG]CAAA[AT]-3' in the promoter region of stage-specific genes that are required for progression through meiosis and sporulation.
At birth, meiosis arrests at the diplotene phase of prophase I. [7] Oocytes will remain in this state until the time of puberty. At the time of ovulation a surge of LH initiates the resumption of meiosis and oocytes enter the second cycle, which is known as oocyte maturation. Meiosis is then arrested again during metaphase 2 until fertilisation ...
Prior to megagametogenesis, a developing embryo undergoes meiosis during a process called megasporogenesis. Next, three out of four megaspores disintegrate, leaving only the megaspore that will undergo the megagametogenesis. [3] The following steps are shown in Figure 1, and detailed below. The remaining megaspore undergoes a round of mitosis.
At puberty, one primary oocyte will continue meiosis each menstrual cycle. Because there is an absence of regenerating germ cells and oogonia in the human, the number of primary oocytes dwindles after each menstrual cycle until menopause , when the female no longer has a population of primary oocytes.
Fertilization was not understood in antiquity. Hippocrates believed that the embryo was the product of male semen and a female factor. But Aristotle held that only male semen gave rise to an embryo, while the female only provided a place for the embryo to develop, [5] a concept he acquired from the preformationist Pythagoras.
Gene conversion is the process by which one DNA sequence replaces a homologous sequence such that the sequences become identical after the conversion. [1] Gene conversion can be either allelic, meaning that one allele of the same gene replaces another allele, or ectopic, meaning that one paralogous DNA sequence converts another.