Search results
Results from the WOW.Com Content Network
Multiple dispatch can be added to Python using a library extension. For example, using the module multimethod.py [13] and also with the module multimethods.py [14] which provides CLOS-style multimethods for Python without changing the underlying syntax or keywords of the language.
Numba is used from Python, as a tool (enabled by adding a decorator to relevant Python code), a JIT compiler that translates a subset of Python and NumPy code into fast machine code. Pythran compiles a subset of Python 3 to C++ . [164] RPython can be compiled to C, and is used to build the PyPy interpreter of Python.
Cython works by producing a standard Python module. However, the behavior differs from standard Python in that the module code, originally written in Python, is translated into C. While the resulting code is fast, it makes many calls into the CPython interpreter and CPython standard libraries to perform actual work.
The g++ compiler implements the multiple inheritance of the classes B1 and B2 in class D using two virtual method tables, one for each base class. (There are other ways to implement multiple inheritance, but this is the most common.) This leads to the necessity for "pointer fixups", also called thunks, when casting. Consider the following C++ code:
The class invariant guarantees (for the local class) that the state of the class will be maintained within specified tolerances at the end of each feature execution. When using contracts, a supplier should not try to verify that the contract conditions are satisfied—a practice known as offensive programming —the general idea being that code ...
Discover and modify source-code constructions (such as code blocks, classes, methods, protocols, etc.) as first-class objects at runtime. Convert a string matching the symbolic name of a class or function into a reference to or invocation of that class or function. Evaluate a string as if it were a source-code statement at runtime.
32-bit compilers emit, respectively: _f _g@4 @h@4 In the stdcall and fastcall mangling schemes, the function is encoded as _name@X and @name@X respectively, where X is the number of bytes, in decimal, of the argument(s) in the parameter list (including those passed in registers, for fastcall).
The factory method design pattern solves problems such as: How can an object's subclasses redefine its subsequent and distinct implementation? The pattern involves creation of a factory method within the superclass that defers the object's creation to a subclass's factory method.