Search results
Results from the WOW.Com Content Network
In hot summer weather, a rise in relative humidity increases the apparent temperature to humans (and other animals) by hindering the evaporation of perspiration from the skin. For example, according to the heat index, a relative humidity of 75% at air temperature of 80.0 °F (26.7 °C) would feel like 83.6 ± 1.3 °F (28.7 ± 0.7 °C). [13] [14]
Relationship to relative humidity: The relative humidity (RH) of air in equilibrium with a sample is also called the Equilibrium Relative Humidity (ERH) and is usually given as a percentage. [1] It is equal to water activity according to E R H = a w × 100 % . {\displaystyle \mathrm {ERH} =a_{w}\times 100\%.}
When the temperature is 30 °C (86 °F) and the dew point is 15 °C (59 °F), the humidex is 34. If the temperature remains 30 °C (86 °F) and the dew point rises to 25 °C (77 °F), the humidex rises to 42. The humidex is higher than the U.S. heat index at equal temperature and relative humidity. The humidex formula is as follows: [7] [8]
The relationship between water content and equilibrium relative humidity of a material can be displayed graphically by a curve, the so-called moisture sorption isotherm. For each humidity value, a sorption isotherm indicates the corresponding water content value at a given temperature. If the composition or quality of the material changes, then ...
Schematic of the LCL in relation to the temperature (T) and dew point and their altitude (Z); the moist adiabatic temperature curve above the LCL is also sketched for reference The lifting condensation level or lifted condensation level ( LCL ) is the height at which the relative humidity (RH) of an air parcel will reach 100% with respect to ...
Relative humidity (RH) is the ratio of the amount of water vapor in the air to the amount of water vapor that the air could hold at the specific temperature and pressure. While the human body has thermoreceptors in the skin that enable perception of temperature, relative humidity is detected indirectly.
If the wood is placed in an environment at a particular temperature and relative humidity, its moisture content will generally begin to change in time, until it is finally in equilibrium with its surroundings, and the moisture content no longer changes in time. This moisture content is the EMC of the wood for that temperature and relative humidity.
Apparent temperature, also known as "feels like", [1] [2] is the temperature equivalent perceived by humans, caused by the combined effects of air temperature, relative humidity and wind speed. The measure is most commonly applied to the perceived outdoor temperature.