Search results
Results from the WOW.Com Content Network
The mode of a sample is the element that occurs most often in the collection. For example, the mode of the sample [1, 3, 6, 6, 6, 6, 7, 7, 12, 12, 17] is 6. Given the list of data [1, 1, 2, 4, 4] its mode is not unique. A dataset, in such a case, is said to be bimodal, while a set with more than two modes may be described as multimodal.
the weighted arithmetic mean of the median and two quartiles. Winsorized mean an arithmetic mean in which extreme values are replaced by values closer to the median. Any of the above may be applied to each dimension of multi-dimensional data, but the results may not be invariant to rotations of the multi-dimensional space. Geometric median
The median of a symmetric unimodal distribution coincides with the mode. The median of a symmetric distribution which possesses a mean μ also takes the value μ. The median of a normal distribution with mean μ and variance σ 2 is μ. In fact, for a normal distribution, mean = median = mode.
a measure of location, or central tendency, such as the arithmetic mean; a measure of statistical dispersion like the standard mean absolute deviation; a measure of the shape of the distribution like skewness or kurtosis; if more than one variable is measured, a measure of statistical dependence such as a correlation coefficient
The normal distribution with density () (mean and variance >) has the following properties: It is symmetric around the point =, which is at the same time the mode, the median and the mean of the distribution. [20]
For example, the sample mean is an unbiased estimator of the population mean. This means that the expected value of the sample mean equals the true population mean. [1] A descriptive statistic is used to summarize the sample data. A test statistic is used in statistical hypothesis testing. A single statistic can be used for multiple purposes ...
The mean, the median and the mode are all different kinds of averages. As I wrote on the talk page of Average: Just do a Google search on ["measures of central tendency"]. The first hit: "This section defines the three most common measures of central tendency: the mean, the median, and the mode."
The geometric mean and the harmonic mean are allowed to measure the central tendency, in addition to the mode, median, and arithmetic mean. The studentized range and the coefficient of variation are allowed to measure statistical dispersion. All statistical measures are allowed because all necessary mathematical operations are defined for the ...