Search results
Results from the WOW.Com Content Network
The lasing threshold is the lowest excitation level at which a laser's output is dominated by stimulated emission rather than by spontaneous emission. Below the threshold, the laser's output power rises slowly with increasing excitation. Above threshold, the slope of power vs. excitation is orders of magnitude greater.
The slope efficiency is an important property of a laser. It is obtained by plotting the laser output power against the input pump power. Above the lasing threshold, the resulting curve is usually close to a straight line. The slope efficiency is the slope of this line. Slope efficiency can similarly be defined in terms of output and input ...
The laser damage threshold (LDT) or laser induced damage threshold (LIDT) is the limit at which an optic or material will be damaged by a laser given the fluence (energy per area), intensity (power per area), and wavelength. LDT values are relevant to both transmissive and reflective optical elements and in applications where the laser induced ...
A laser warning symbol. Laser radiation safety is the safe design, use and implementation of lasers to minimize the risk of laser accidents, especially those involving eye injuries. Since even relatively small amounts of laser light can lead to permanent eye injuries, the sale and usage of lasers is typically subject to government regulations.
The laser diode chip removed and placed on the eye of a needle for scale A laser diode with the case cut away. The laser diode chip is the small black chip at the front; a photodiode at the back is used to control output power. SEM (scanning electron microscope) image of a commercial laser diode with its case and window cut away. The anode ...
The larger output aperture of VCSELs, compared to most edge-emitting lasers, produces a lower divergence angle of the output beam, and makes possible high coupling efficiency with optical fibers. The small active region, compared to edge-emitting lasers, reduces the threshold current of VCSELs, resulting in low power consumption.
Laser types with distinct laser lines are shown above the wavelength bar, while below are shown lasers that can emit in a wavelength range. The height of the lines and bars gives an indication of the maximal power/pulse energy commercially available, while the color codifies the type of laser material (see the figure description for details).
Q-switching, sometimes known as giant pulse formation or Q-spoiling, [1] is a technique by which a laser can be made to produce a pulsed output beam. The technique allows the production of light pulses with extremely high peak power, much higher than would be produced by the same laser if it were operating in a continuous wave (constant output) mode.