Search results
Results from the WOW.Com Content Network
The gauss is the unit of magnetic flux density B in the system of Gaussian units and is equal to Mx/cm 2 or g/Bi/s 2, while the oersted is the unit of H-field. One tesla (T) corresponds to 10 4 gauss, and one ampere (A) per metre corresponds to 4π × 10 −3 oersted .
The strength of a magnetic field is measured in units of tesla in the SI units, and in gauss in the cgs system of units. 10,000 gauss are equal to one tesla. [1] Measurements of the Earth's magnetic field are often quoted in units of nanotesla (nT), also called a gamma. [ 2 ]
Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m 2]. [1] One tesla is equal to 10 4 gauss. Magnetic field drops off as the inverse cube of the distance ( 1 / distance 3 ) from a dipole source. Energy required to produce laboratory magnetic fields increases with the square of magnetic field. [2]
The oersted (Oe) is a unit of magnetic field strength equal to 1 dyn 1/2 ⋅cm −1, corresponding to ~ 79.577 47 A/m. The maxwell (Mx) is a unit of magnetic flux, corresponding to 10 nWb. [4] The gauss (G) is a unit of magnetic flux density, corresponding to 100 μT. [4]
In the Gaussian system, unlike the ISQ, the electric field E G and the magnetic field B G have the same dimension. This amounts to a factor of c between how B is defined in the two unit systems, on top of the other differences. [3] (The same factor applies to other magnetic quantities such as the magnetic field, H, and magnetization, M.)
magnetic flux density, magnetic induction: tesla: T = Wb/m 2 = N⋅A −1 ⋅m −1: kg⋅s −2 ⋅A −1: Φ, Φ M, Φ B magnetic flux: weber: Wb = V⋅s kg⋅m 2 ⋅s −2 ⋅A −1: H magnetic field strength ampere per metre: A/m A⋅m −1: F magnetomotive force: ampere: A = Wb/H A R magnetic reluctance: inverse henry: H −1 = A/Wb kg − ...
The magnetic field of larger magnets can be obtained by modeling them as a collection of a large number of small magnets called dipoles each having their own m. The magnetic field produced by the magnet then is the net magnetic field of these dipoles; any net force on the magnet is a result of adding up the forces on the individual dipoles.
An EMF meter is a scientific instrument for measuring electromagnetic fields (abbreviated as EMF). Most meters measure the electromagnetic radiation flux density (DC fields) or the change in an electromagnetic field over time (AC fields), essentially the same as a radio antenna, but with quite different detection characteristics.