enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Legendre's conjecture - Wikipedia

    en.wikipedia.org/wiki/Legendre's_conjecture

    Legendre's conjecture, proposed by Adrien-Marie Legendre, states that there is a prime number between and (+) for every positive integer. [1] The conjecture is one of Landau's problems (1912) on prime numbers, and is one of many open problems on the spacing of prime numbers.

  3. Oppermann's conjecture - Wikipedia

    en.wikipedia.org/wiki/Oppermann's_conjecture

    and at least another prime between x 2 and x(x + 1). It can also be phrased equivalently as stating that the prime-counting function must take unequal values at the endpoints of each range. [3] That is: π (x 2 − x) < π (x 2) < π (x 2 + x) for x > 1. with π (x) being the number of prime numbers less than or equal to x.

  4. Closing the Gap: The Quest to Understand Prime Numbers

    en.wikipedia.org/wiki/Closing_the_Gap:_The_Quest...

    The main topic of the book is the conjecture that there exist infinitely many twin primes, dating back at least to Alphonse de Polignac (who conjectured more generally in 1849 that every even number appears infinitely often as the difference between two primes), and the significant progress made recently by Yitang Zhang and others on this ...

  5. Landau's problems - Wikipedia

    en.wikipedia.org/wiki/Landau's_problems

    Montgomery and Vaughan showed that the exceptional set of even numbers not expressible as the sum of two primes has a density zero, although the set is not proven to be finite. [9] The best current bounds on the exceptional set is E ( x ) < x 0.72 {\displaystyle E(x)<x^{0.72}} (for large enough x ) due to Pintz , [ 10 ] [ 11 ] and E ( x ) ≪ x ...

  6. Sieve of Atkin - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Atkin

    The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...

  7. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    However, it does not contain all the prime numbers, since the terms gcd(n + 1, a n) are always odd and so never equal to 2. 587 is the smallest prime (other than 2) not appearing in the first 10,000 outcomes that are different from 1. Nevertheless, in the same paper it was conjectured to contain all odd primes, even though it is rather inefficient.

  8. Bertrand's postulate - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_postulate

    In number theory, Bertrand's postulate is the theorem that for any integer >, there exists at least one prime number with n < p < 2 n − 2. {\displaystyle n<p<2n-2.} A less restrictive formulation is: for every n > 1 {\displaystyle n>1} , there is always at least one prime p {\displaystyle p} such that

  9. Goldbach's conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_conjecture

    Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states that every even natural number greater than 2 is the sum of two prime numbers. The conjecture has been shown to hold for all integers less than 4 × 10 18 but remains unproven despite considerable effort.