enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reflection (physics) - Wikipedia

    en.wikipedia.org/wiki/Reflection_(physics)

    Reflection of light is either specular (mirror-like) or diffuse (retaining the energy, but losing the image) depending on the nature of the interface.In specular reflection the phase of the reflected waves depends on the choice of the origin of coordinates, but the relative phase between s and p (TE and TM) polarizations is fixed by the properties of the media and of the interface between them.

  3. Fermat's principle - Wikipedia

    en.wikipedia.org/wiki/Fermat's_principle

    Hence all the conclusions that Huygens drew from that construction – including, without limitation, the laws of rectilinear propagation of light, ordinary reflection, ordinary refraction, and the extraordinary refraction of "Iceland crystal" (calcite) – are also consequences of Fermat's principle.

  4. Specular reflection - Wikipedia

    en.wikipedia.org/wiki/Specular_reflection

    Specular reflection, or regular reflection, is the mirror-like reflection of waves, such as light, from a surface. [ 1 ] The law of reflection states that a reflected ray of light emerges from the reflecting surface at the same angle to the surface normal as the incident ray, but on the opposing side of the surface normal in the plane formed by ...

  5. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    The relationship between these angles is given by the law of reflection: =, and Snell's law: ⁡ = ⁡. The behavior of light striking the interface is explained by considering the electric and magnetic fields that constitute an electromagnetic wave , and the laws of electromagnetism , as shown below .

  6. Snell's law - Wikipedia

    en.wikipedia.org/wiki/Snell's_law

    Snell's law (also known as the Snell–Descartes law, the ibn-Sahl law, [1] and the law of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air.

  7. Brewster's angle - Wikipedia

    en.wikipedia.org/wiki/Brewster's_angle

    (See diagram, above) With simple geometry this condition can be expressed as + =, where θ 1 is the angle of reflection (or incidence) and θ 2 is the angle of refraction. Using Snell's law, ⁡ = ⁡,

  8. Lambertian reflectance - Wikipedia

    en.wikipedia.org/wiki/Lambertian_reflectance

    Diagram of Lambertian diffuse reflection. The black arrow shows incident radiance, and the red arrows show the reflected radiant intensity in each direction. When viewed from various angles, the reflected radiant intensity and the apparent area of the surface both vary with the cosine of the viewing angle, so the reflected radiance (intensity per unit area) is the same from all viewing angles.

  9. Total internal reflection - Wikipedia

    en.wikipedia.org/wiki/Total_internal_reflection

    Fig. 1: Underwater plants in a fish tank, and their inverted images (top) formed by total internal reflection in the water–air surface. In physics, total internal reflection (TIR) is the phenomenon in which waves arriving at the interface (boundary) from one medium to another (e.g., from water to air) are not refracted into the second ("external") medium, but completely reflected back into ...