enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Enthalpy change of solution - Wikipedia

    en.wikipedia.org/wiki/Enthalpy_change_of_solution

    The enthalpy of solution is most often expressed in kJ/mol at constant temperature. The energy change can be regarded as being made up of three parts: the endothermic breaking of bonds within the solute and within the solvent, and the formation of attractions between the solute and the solvent.

  3. Heat of dilution - Wikipedia

    en.wikipedia.org/wiki/Heat_of_dilution

    As a result, the enthalpy change caused by breaking and forming attraction is canceled, and the dilution of an ideal solution causes no enthalpy change. [3] However, if the solute and solvent cannot be treated identically when considered in terms of molecular attraction, which makes the solution non-ideal, the net change of enthalpy is nonzero.

  4. Enthalpy - Wikipedia

    en.wikipedia.org/wiki/Enthalpy

    Standard Enthalpy of solution - is defined as the enthalpy change observed in a constituent of a thermodynamic system when one mole of a solute is dissolved completely in an excess of solvent, so that the solution is at infinite dilution.

  5. Solvation - Wikipedia

    en.wikipedia.org/wiki/Solvation

    The enthalpy of solution is the solution enthalpy minus the enthalpy of the separate systems, whereas the entropy of solution is the corresponding difference in entropy. The solvation energy (change in Gibbs free energy) is the change in enthalpy minus the product of temperature (in Kelvin) times the change in entropy. Gases have a negative ...

  6. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".

  7. Excess property - Wikipedia

    en.wikipedia.org/wiki/Excess_property

    The pure component's molar volume and molar enthalpy are equal to the corresponding partial molar quantities because there is no volume or internal energy change on mixing for an ideal solution. The molar volume of a mixture can be found from the sum of the excess volumes of the components of a mixture:

  8. Standard state - Wikipedia

    en.wikipedia.org/wiki/Standard_state

    The standard state of a material (pure substance, mixture or solution) is a reference point used to calculate its properties under different conditions.A degree sign (°) or a superscript Plimsoll symbol (⦵) is used to designate a thermodynamic quantity in the standard state, such as change in enthalpy (ΔH°), change in entropy (ΔS°), or change in Gibbs free energy (ΔG°).

  9. Thermochemical equation - Wikipedia

    en.wikipedia.org/wiki/Thermochemical_equation

    Enthalpy is the transfer of energy in a reaction (for chemical reactions, it is in the form of heat) and is the change in enthalpy. Δ H {\displaystyle \Delta H} is a state function, meaning that Δ H {\displaystyle \Delta H} is independent of processes occurring between initial and final states.