Search results
Results from the WOW.Com Content Network
In statistics, nonlinear regression is a form of regression analysis in which observational data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables. The data are fitted by a method of successive approximations (iterations).
Non-linear least squares is the form of least squares analysis used to fit a set of m observations with a model that is non-linear in n unknown parameters (m ≥ n). It is used in some forms of nonlinear regression. The basis of the method is to approximate the model by a linear one and to refine the parameters by successive iterations.
Fityk – nonlinear regression software (GUI and command line) GNU Octave – programming language very similar to MATLAB with statistical features; gretl – gnu regression, econometrics and time-series library; intrinsic Noise Analyzer (iNA) – For analyzing intrinsic fluctuations in biochemical systems
The function F is some nonlinear function, such as a polynomial. F can be a neural network, a wavelet network, a sigmoid network and so on. To test for non-linearity in a time series, the BDS test (Brock-Dechert-Scheinkman test) developed for econometrics can be used.
Nonlinear mixed-effects models are a special case of regression analysis for which a range of different software solutions are available. The statistical properties of nonlinear mixed-effects models make direct estimation by a BLUE estimator impossible. Nonlinear mixed effects models are therefore estimated according to Maximum Likelihood ...
The figure on the right shows a plot of this function: a line giving the predicted ^ versus x, with the original values of y shown as red dots. The data at the extremes of x indicates that the relationship between y and x may be non-linear (look at the red dots relative to the regression line at low and high values of x). We thus turn to MARS ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
In SAS, the GODFREY option of the MODEL statement in PROC AUTOREG provides a version of this test. In Python Statsmodels, the acorr_breusch_godfrey function in the module statsmodels.stats.diagnostic [9] In EViews, this test is already done after a regression, at "View" → "Residual Diagnostics" → "Serial Correlation LM Test".