enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Impedance matching - Wikipedia

    en.wikipedia.org/wiki/Impedance_matching

    Practical impedance-matching devices will generally provide best results over a specified frequency band. The concept of impedance matching is widespread in electrical engineering, but is relevant in other applications in which a form of energy, not necessarily electrical, is transferred between a source and a load, such as in acoustics or optics.

  3. Smith chart - Wikipedia

    en.wikipedia.org/wiki/Smith_chart

    To match the termination at 800 MHz, a series capacitor of 2.6 pF must be placed in series with the transmission line at a distance of 29.6 mm from the termination. An alternative shunt match could be calculated after performing a Smith chart transformation from normalised impedance to normalised admittance.

  4. SWR meter - Wikipedia

    en.wikipedia.org/wiki/SWR_meter

    An SWR meter does not measure the actual impedance of a load (the resistance and reactance), but only the mismatch ratio. To measure the actual impedance requires an antenna analyzer or other similar RF measuring device. For accurate readings, the SWR meter itself must also match the line's impedance (typically 50 or 75 Ohms).

  5. Antenna tuner - Wikipedia

    en.wikipedia.org/wiki/Antenna_tuner

    Transformers, autotransformers, and baluns are sometimes incorporated into the design of narrow band antenna tuners and antenna cabling connections. They will all usually have little effect on the resonant frequency of either the antenna or the narrow band transmitter circuits, but can widen the range of impedances that the antenna tuner can match, and/or convert between balanced and ...

  6. Standing wave ratio - Wikipedia

    en.wikipedia.org/wiki/Standing_wave_ratio

    SWR is used as a measure of impedance matching of a load to the characteristic impedance of a transmission line carrying radio frequency (RF) signals. This especially applies to transmission lines connecting radio transmitters and receivers with their antennas, as well as similar uses of RF cables such as cable television connections to TV receivers and distribution amplifiers.

  7. J-pole antenna - Wikipedia

    en.wikipedia.org/wiki/J-pole_antenna

    The J-pole antenna is an end-fed omnidirectional half-wave antenna that is matched to the feedline by a shorted quarter-wave parallel transmission line stub. [5] [1] [6] For a transmitting antenna to operate efficiently, absorbing all the power provided by its feedline, the antenna must be impedance matched to the line; it must have a resistance equal to the feedline's characteristic impedance.

  8. Mismatch loss - Wikipedia

    en.wikipedia.org/wiki/Mismatch_loss

    Any component of the transmission line that has an input and output will contribute to the overall mismatch loss of the system. For example, in mixers mismatch loss occurs when there is an impedance mismatch between the RF port and IF port of the mixer [dubious – discuss]. [4] This is one of the principal reasons for losses in mixers.

  9. Whip antenna - Wikipedia

    en.wikipedia.org/wiki/Whip_antenna

    The gain and input impedance of the antenna is dependent on the length of the whip element, compared to a wavelength, but also on the size and shape of the ground plane used (if any). A quarter wave vertical antenna working against a perfectly conducting, infinite ground will have a gain of 5.19 dBi and a radiation resistance of about 36.8 ohms .