Search results
Results from the WOW.Com Content Network
The gas-lift mandrel is a device installed in the tubing string of a gas-lift well onto which or into which a gas-lift valve is fitted. There are two common types of mandrels. In a conventional gas-lift mandrel, a gas-lift valve is installed as the tubing is placed in the well. Thus, to replace or repair the valve, the tubing string must be pulled.
"Airlift calculation by Sanitaire (pdf document)" (PDF). sanitaire.com. 2012-01-05. Archived from the original on 2012-01-05}: CS1 maint: unfit URL ; Recovered airlift_basic_calculation.xls via Waybackmachine. Mirrored at filedropper dot com /airliftbasiccalculation.
The Vortex lattice method, (VLM), is a numerical method used in computational fluid dynamics, mainly in the early stages of aircraft design and in aerodynamic education at university level. The VLM models the lifting surfaces, such as a wing, of an aircraft as an infinitely thin sheet of discrete vortices to compute lift and induced drag.
Petroleum production engineers design and select subsurface equipment to produce oil and gas well fluids. [1] They often are degreed as petroleum engineers, although they may come from other technical disciplines (e.g., mechanical engineering, chemical engineering, physicist) and subsequently be trained by an oil and gas company.
Artificial lift is the use of artificial means to increase the flow of liquids, such as crude oil or water, from a production well. Generally this is achieved by the use of a mechanical device inside the well (known as pump or velocity string) or by decreasing the weight of the hydrostatic column by injecting gas into the liquid some distance down the well.
In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid.TDH is the total amount of system pressure, measured in feet, where water can flow through a system before gravity takes over, and is essential for pump specification.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
This calculation is at sea level at 0 °C. For higher altitudes, or higher temperatures, the amount of lift will decrease proportionally to the air density, but the ratio of the lifting capability of hydrogen to that of helium will remain the same. This calculation does not include the mass of the envelope need to hold the lifting gas.