Search results
Results from the WOW.Com Content Network
[8] [9] No change in voltage was required by either the Central European or the UK system, as both 220 V and 240 V fall within the lower 230 V tolerance bands (230 V ±6%). Usually the voltage of 230 V ±3% is maintained. Some areas of the UK still have 250 volts for legacy reasons, but these also fall within the 10% tolerance band of 230 volts.
Nominal voltage is 230/400 V; in practice 240/415 V is more commonly used. Austria: C F ÖVE-IG/EN 50075 ÖVE/ÖNORM E 8620 230 V 400 V 50 Hz Azerbaijan: C, F 220 V 380 V 50 Hz Bahamas: A, B 120 V 208 V 60 Hz Bahrain: G 230 V 400 V 50 Hz Bangladesh: A, C, D, G 220 V 380 V 50 Hz Barbados: A, B 115 V 200 V 50 Hz Belarus: C, F
The phase angle difference between voltage and current of each phase is not necessarily 0 and depends on the type of load impedance, Z y. Inductive and capacitive loads will cause current to either lag or lead the voltage. However, the relative phase angle between each pair of lines (1 to 2, 2 to 3, and 3 to 1) will still be −120°.
Most of the Americas use 60 Hz AC, the 120/240 volt split-phase system domestically and three phase for larger installations. North American transformers usually power homes at 240 volts, similar to Europe's 230 volts. It is the split-phase that allows use of 120 volts in the home. Japan's utility frequencies are 50 Hz and 60 Hz.
In Europe, three-phase 230/400 V is most commonly used. However, 130/225 V, three-wire, two-phase electric power discontinued systems called B1 are used to run old installations in small groups of houses when only two of the three-phase high-voltage conductors are used. The phase shift in Europe is 120°, as is the case with three-phase current.
On the other hand, if the power supply has a voltage selector switch, based on the Delon circuit, for 115/230 V (computer ATX power supplies typically are in this category), the selector switch would have to be put in the 230 V position, and the required voltage would be 325 VDC (230 × √2).
At that time, the volt was defined as the potential difference [i.e., what is nowadays called the "voltage (difference)"] across a conductor when a current of one ampere dissipates one watt of power. The "international volt" was defined in 1893 as 1 ⁄ 1.434 of the emf of a Clark cell.
The cable connectors and sockets are keyed and colour-coded, according to the voltage range and frequency used; common colours for 50–60 Hz AC power are yellow for 100–130 volts, blue for 200–250 volts, and red for 380–480 volts. The blue fittings are often used for providing weather-proofed exterior sockets for outdoor apparatus.