enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponential stability - Wikipedia

    en.wikipedia.org/wiki/Exponential_stability

    In control theory, a ... Exponential stability is a form of asymptotic stability, ... It is important to note that in this example the system is not stable for all ...

  3. Stability theory - Wikipedia

    en.wikipedia.org/wiki/Stability_theory

    In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of dynamical systems under small perturbations of initial conditions. The heat equation , for example, is a stable partial differential equation because small perturbations of initial data lead to small variations in temperature ...

  4. Lyapunov stability - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_stability

    (There are examples showing that attractivity does not imply asymptotic stability. [ 9 ] [ 10 ] [ 11 ] Such examples are easy to create using homoclinic connections .) If the Jacobian of the dynamical system at an equilibrium happens to be a stability matrix (i.e., if the real part of each eigenvalue is strictly negative), then the equilibrium ...

  5. Control-Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Control-Lyapunov_function

    For asymptotic stability, the state is also required to converge to =. A control-Lyapunov function is used to test whether a system is asymptotically stabilizable , that is whether for any state x there exists a control u ( x , t ) {\displaystyle u(x,t)} such that the system can be brought to the zero state asymptotically by applying the ...

  6. Input-to-state stability - Wikipedia

    en.wikipedia.org/wiki/Input-to-state_stability

    ISS unified the Lyapunov and input-output stability theories and revolutionized our view on stabilization of nonlinear systems, design of robust nonlinear observers, stability of nonlinear interconnected control systems, nonlinear detectability theory, and supervisory adaptive control. This made ISS the dominating stability paradigm in ...

  7. LaSalle's invariance principle - Wikipedia

    en.wikipedia.org/wiki/LaSalle's_invariance_principle

    If ˙ is negative definite, then the global asymptotic stability of the origin is a consequence of Lyapunov's second theorem. The invariance principle gives a criterion for asymptotic stability in the case when V ˙ ( x ) {\displaystyle {\dot {V}}(\mathbf {x} )} is only negative semidefinite.

  8. Comparison function - Wikipedia

    en.wikipedia.org/wiki/Comparison_function

    Comparison functions are primarily used to obtain quantitative restatements of stability properties as Lyapunov stability, uniform asymptotic stability, etc. These restatements are often more useful than the qualitative definitions of stability properties given in ε - δ {\displaystyle \varepsilon {\text{-}}\delta } language.

  9. Asymptotic analysis - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_analysis

    Asymptotic theory does not provide a method of evaluating the finite-sample distributions of sample statistics, however. Non-asymptotic bounds are provided by methods of approximation theory. Examples of applications are the following. In applied mathematics, asymptotic analysis is used to build numerical methods to approximate equation solutions.