Search results
Results from the WOW.Com Content Network
The Hagen–Poiseuille equation is useful in determining the vascular resistance and hence flow rate of intravenous (IV) fluids that may be achieved using various sizes of peripheral and central cannulas. The equation states that flow rate is proportional to the radius to the fourth power, meaning that a small increase in the internal diameter ...
The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .
The area required to calculate the mass flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface, e.g. for substances passing through a filter or a membrane, the real surface is the (generally curved) surface area of the filter, macroscopically - ignoring the area spanned by the holes in the filter/membrane ...
The flow coefficient of a device is a relative measure of its efficiency at allowing fluid flow. It describes the relationship between the pressure drop across an orifice valve or other assembly and the corresponding flow rate. Mathematically the flow coefficient C v (or flow-capacity rating of valve) can be expressed as
In fluid dynamics, the volumetric flux is the rate of volume flow across a unit area (m 3 ·s −1 ·m −2), and has dimensions of distance/time (volume/(time*area)) - equivalent to mean velocity. The density of a particular property in a fluid's volume, multiplied with the volumetric flux of the fluid, thus defines the advective flux of that ...
Solving for Q then allows an estimate of the volumetric flow rate (discharge) without knowing the limiting or actual flow velocity. The formula can be obtained by use of dimensional analysis. In the 2000s this formula was derived theoretically using the phenomenological theory of turbulence. [4] [5]
Q is the volumetric flow rate, used here to measure flow instead of mean velocity according to Q = π / 4 D c 2 <v> (m 3 /s). Note that this laminar form of Darcy–Weisbach is equivalent to the Hagen–Poiseuille equation, which is analytically derived from the Navier–Stokes equations.
The average flow rate at the mouth of the Amazon is sufficient to fill more than 83 such pools each second. The estimated global total for all rivers is 1.2 × 10 6 m 3 /s (43 million cu ft/s), [ 1 ] of which the Amazon would be approximately 18%.