enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nitrogen cycle - Wikipedia

    en.wikipedia.org/wiki/Nitrogen_cycle

    The nitrogen cycle is the biogeochemical cycle by which nitrogen is converted into multiple chemical forms as it circulates among atmospheric, terrestrial, and marine ecosystems. The conversion of nitrogen can be carried out through both biological and physical processes.

  3. Nitrification - Wikipedia

    en.wikipedia.org/wiki/Nitrification

    Nitrogen cycle. Nitrification is the biological oxidation of ammonia to nitrate via the intermediary nitrite. Nitrification is an important step in the nitrogen cycle in soil. The process of complete nitrification may occur through separate organisms [1] or entirely within one organism, as in comammox bacteria. The transformation of ammonia to ...

  4. Biogeochemical cycle - Wikipedia

    en.wikipedia.org/wiki/Biogeochemical_cycle

    A biogeochemical cycle, or more generally a cycle of matter, [1] is the movement and transformation of chemical elements and compounds between living organisms, the atmosphere, and the Earth's crust. Major biogeochemical cycles include the carbon cycle, the nitrogen cycle and the water cycle. In each cycle, the chemical element or molecule is ...

  5. Lichens and nitrogen cycling - Wikipedia

    en.wikipedia.org/wiki/Lichens_and_nitrogen_cycling

    The nitrogen cycle is one of the Earth's biogeochemical cycles. It involves the conversion of nitrogen into different chemical forms. The main processes of the nitrogen cycle are the fixation, ammonification, nitrification, and denitrification. As one of the macronutrients, nitrogen plays an important role in plant growth.

  6. Category:Nitrogen cycle - Wikipedia

    en.wikipedia.org/wiki/Category:Nitrogen_cycle

    Nitrogen is a critical chemical element in both proteins and nucleic acids, and thus every living organism must metabolize nitrogen to survive. Only bacteria and Archaea are able to convert nitrogen gas (N 2 ) to and from soluble ionic compounds that other organisms can metabolize.

  7. Denitrification - Wikipedia

    en.wikipedia.org/wiki/Denitrification

    The lighter isotope of nitrogen, 14 N, is preferred during denitrification, leaving the heavier nitrogen isotope, 15 N, in the residual matter. This selectivity leads to the enrichment of 14 N in the biomass compared to 15 N. [ 27 ] Moreover, the relative abundance of 14 N can be analyzed to distinguish denitrification apart from other ...

  8. Human impact on the nitrogen cycle - Wikipedia

    en.wikipedia.org/wiki/Human_impact_on_the...

    Approximately 78% of Earth's atmosphere is N gas (N 2), which is an inert compound and biologically unavailable to most organisms.In order to be utilized in most biological processes, N 2 must be converted to reactive nitrogen (Nr), which includes inorganic reduced forms (NH 3 and NH 4 +), inorganic oxidized forms (NO, NO 2, HNO 3, N 2 O, and NO 3 −), and organic compounds (urea, amines, and ...

  9. Marine biogeochemical cycles - Wikipedia

    en.wikipedia.org/wiki/Marine_biogeochemical_cycles

    Nitrogen enters the ocean through precipitation, runoff, or as N 2 from the atmosphere. Nitrogen cannot be utilized by phytoplankton as N 2 so it must undergo nitrogen fixation which is performed predominantly by cyanobacteria. [82] Without supplies of fixed nitrogen entering the marine cycle, the fixed nitrogen would be used up in about 2000 ...