Search results
Results from the WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
The modification to the algorithm does not affect the way the controller responds to process disturbances. Basing proportional action on PV eliminates the instant and possibly very large change in output caused by a sudden change to the setpoint. Depending on the process and tuning this may be beneficial to the response to a setpoint step.
The π-calculus belongs to the family of process calculi, mathematical formalisms for describing and analyzing properties of concurrent computation.In fact, the π-calculus, like the λ-calculus, is so minimal that it does not contain primitives such as numbers, booleans, data structures, variables, functions, or even the usual control flow statements (such as if-then-else, while).
In computer science, the process calculi (or process algebras) are a diverse family of related approaches for formally modelling concurrent systems.Process calculi provide a tool for the high-level description of interactions, communications, and synchronizations between a collection of independent agents or processes.
The Gauss–Legendre algorithm is an algorithm to compute the digits of π. It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of π . However, it has some drawbacks (for example, it is computer memory -intensive) and therefore all record-breaking calculations for many years have used other ...
In computer science, communicating sequential processes (CSP) is a formal language for describing patterns of interaction in concurrent systems. [1] It is a member of the family of mathematical theories of concurrency known as process algebras, or process calculi, based on message passing via channels.
The constants were generated by shuffling the integers 0 through 255 using a variant of Durstenfeld's algorithm with a pseudorandom number generator based on decimal digits of π (pi) [3] [5] (see nothing up my sleeve number). The algorithm runs through a loop where it permutes each byte in the auxiliary block 18 times for every 16 input bytes ...
At any time, updates to the table could be: the insertion of a new process at level 0, a change to the last to enter at a given level, or a process moving up one level (if it is not the last to enter OR there are no other processes at its own level or higher). The filter algorithm generalizes Peterson's algorithm to N > 2 processes. [6]