enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exact trigonometric values - Wikipedia

    en.wikipedia.org/wiki/Exact_trigonometric_values

    In contrast, by the Lindemann–Weierstrass theorem, the sine or cosine of any non-zero algebraic number is always transcendental. [4] The real part of any root of unity is a trigonometric number. By Niven's theorem, the only rational trigonometric numbers are 0, 1, −1, 1/2, and −1/2. [5]

  3. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.

  4. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    The sine and the cosine functions, for example, are used to describe simple harmonic motion, which models many natural phenomena, such as the movement of a mass attached to a spring and, for small angles, the pendular motion of a mass hanging by a string. The sine and cosine functions are one-dimensional projections of uniform circular motion.

  5. Sine and cosine - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine

    In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that ...

  6. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin θ < θ. So we have ⁡ < <. For negative values of θ we have, by the symmetry of the sine function

  7. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    is pi, the ratio of the circumference of a circle to its diameter. Euler's identity is named after the Swiss mathematician Leonhard Euler . It is a special case of Euler's formula e i x = cos ⁡ x + i sin ⁡ x {\displaystyle e^{ix}=\cos x+i\sin x} when evaluated for x = π {\displaystyle x=\pi } .

  8. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    Example: sin(0.755) ⁡ = ⁡ (+) ⁡ + ⁡ () + () where the values for sin(0.75) and cos(0.75) are obtained from trigonometric table. The result is accurate to the four digits given. The result is accurate to the four digits given.

  9. Unit circle - Wikipedia

    en.wikipedia.org/wiki/Unit_circle

    The trigonometric functions cosine and sine of angle θ may be defined on the unit circle as follows: If (x, y) is a point on the unit circle, and if the ray from the origin (0, 0) to (x, y) makes an angle θ from the positive x-axis, (where counterclockwise turning is positive), then ⁡ = ⁡ =.