Search results
Results from the WOW.Com Content Network
In statistics, one-way analysis of variance (or one-way ANOVA) is a technique to compare whether two or more samples' means are significantly different (using the F distribution). This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way".
Participants would experience each level of the repeated variables but only one level of the between-subjects variable. Andy Field (2009) [1] provided an example of a mixed-design ANOVA in which he wants to investigate whether personality or attractiveness is the most important quality for individuals seeking a partner. In his example, there is ...
To determine if there is a significant difference between two means with equal sample sizes, the Newman–Keuls method uses a formula that is identical to the one used in Tukey's range test, which calculates the q value by taking the difference between two sample means and dividing it by the standard error:
Factorial ANOVA is used when there is more than one factor. Repeated measures ANOVA is used when the same subjects are used for each factor (e.g., in a longitudinal study). Multivariate analysis of variance (MANOVA) is used when there is more than one response variable.
The formula for the one-way ANOVA F-test statistic is =, or =. The "explained variance", or "between-group variability" is = (¯ ¯) / where ¯ denotes the sample mean in the i-th group, is the number of observations in the i-th group, ¯ denotes the overall mean of the data, and denotes the number of groups.
When a one-way ANOVA is performed, samples are assumed to have been drawn from distributions with equal variance. If this assumption is not valid, the resulting F -test is invalid. The Brown–Forsythe test statistic is the F statistic resulting from an ordinary one-way analysis of variance on the absolute deviations of the groups or treatments ...
When using this kind of design for a binary response, one instead uses the Cochran's Q test. The Sign test (with a two-sided alternative) is equivalent to a Friedman test on two groups. Kendall's W is a normalization of the Friedman statistic between 0 {\textstyle 0} and 1 {\textstyle 1} .
Tukey's range test, also known as Tukey's test, Tukey method, Tukey's honest significance test, or Tukey's HSD (honestly significant difference) test, [1] is a single-step multiple comparison procedure and statistical test.