Search results
Results from the WOW.Com Content Network
Resolution in the context of structural biology is the ability to distinguish the presence or absence of atoms or groups of atoms in a biomolecular structure. Usually, the structure originates from methods such as X-ray crystallography , electron crystallography , or cryo-electron microscopy .
The history of X-ray microscopy can be traced back to the early 20th century. After the German physicist Röntgen discovered X-rays in 1895, scientists soon illuminated an object using an X-ray point source and captured the shadow images of the object with a resolution of several micrometers. [2]
Natural color X-ray photogram of a wine scene. Note the edges of hollow cylinders as compared to the solid candle. William Coolidge explains medical imaging and X-rays.. An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays.
Unsharpness is the loss of spatial resolution in a radiographic image. There are generally considered to be three types of unsharpness: geometric unsharpness, motion unsharpness and photographic or system unsharpness. [1] Motion unsharpness is caused by movement of the patient, the detector or the source of X-rays, during the exposure. Movement ...
The first X-ray diffraction experiment was conducted in 1912 by Max von Laue, [7] while electron diffraction was first realized in 1927 in the Davisson–Germer experiment [8] and parallel work by George Paget Thomson and Alexander Reid. [9] These developed into the two main branches of crystallography, X-ray crystallography and electron ...
A powder X-ray diffractometer in motion. X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract in specific directions.
X-ray optics is the branch of optics dealing with X-rays, rather than visible light. It deals with focusing and other ways of manipulating the X-ray beams for research techniques such as X-ray diffraction , X-ray crystallography , X-ray fluorescence , small-angle X-ray scattering , X-ray microscopy , X-ray phase-contrast imaging , and X-ray ...
Typical X-ray detectors for electron microscopes cover only a small solid angle, which makes X-ray detection relatively inefficient since X-rays are emitted from the sample in every direction. However, detectors covering large solid angles have been recently developed, [ 27 ] and atomic resolution X-ray mapping has even been achieved.