enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolutional layer - Wikipedia

    en.wikipedia.org/wiki/Convolutional_layer

    In artificial neural networks, a convolutional layer is a type of network layer that applies a convolution operation to the input. Convolutional layers are some of the primary building blocks of convolutional neural networks (CNNs), a class of neural network most commonly applied to images, video, audio, and other data that have the property of uniform translational symmetry.

  3. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    After passing through a convolutional layer, the image becomes abstracted to a feature map, also called an activation map, with shape: (number of inputs) × (feature map height) × (feature map width) × (feature map channels). Convolutional layers convolve the input and pass its result to the next layer.

  4. AlexNet - Wikipedia

    en.wikipedia.org/wiki/AlexNet

    AlexNet contains eight layers: the first five are convolutional layers, some of them followed by max-pooling layers, and the last three are fully connected layers. The network, except the last layer, is split into two copies, each run on one GPU. [1] The entire structure can be written as

  5. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    A convolutional neural network (CNN, or ConvNet or shift invariant or space invariant) is a class of deep network, composed of one or more convolutional layers with fully connected layers (matching those in typical ANNs) on top. [17] [18] It uses tied weights and pooling layers. In particular, max-pooling. [19]

  6. Knowledge graph embedding - Wikipedia

    en.wikipedia.org/wiki/Knowledge_graph_embedding

    [5] [36] To compute the score function of a triple, ConvE apply a simple procedure: first concatenes and merge the embeddings of the head of the triple and the relation in a single data [;], then this matrix is used as input for the 2D convolutional layer.

  7. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    As changes, the weighting function () emphasizes different parts of the input function (); If is a positive value, then () is equal to () that slides or is shifted along the -axis toward the right (toward +) by the amount of , while if is a negative value, then () is equal to () that slides or is shifted toward the left (toward ) by the amount ...

  8. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    A bottleneck block [1] consists of three sequential convolutional layers and a residual connection. The first layer in this block is a 1x1 convolution for dimension reduction (e.g., to 1/2 of the input dimension); the second layer performs a 3x3 convolution; the last layer is another 1x1 convolution for dimension restoration.

  9. Kernel (image processing) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(image_processing)

    2D Convolution Animation. Convolution is the process of adding each element of the image to its local neighbors, weighted by the kernel. This is related to a form of mathematical convolution. The matrix operation being performed—convolution—is not traditional matrix multiplication, despite being similarly denoted by *.