enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    In the absence of a net external force, the center of mass moves at a constant speed in a straight line. This applies, for example, to a collision between two bodies. [49] If the total external force is not zero, then the center of mass changes velocity as though it were a point body of mass . This follows from the fact that the internal forces ...

  3. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    In cgs units, if the mass is in grams and the velocity in centimeters per second, then the momentum is in gram centimeters per second (g⋅cm/s). Being a vector, momentum has magnitude and direction. For example, a 1 kg model airplane, traveling due north at 1 m/s in straight and level flight, has a momentum of 1 kg⋅m/s due north measured ...

  4. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  5. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    Example of a velocity vs. time graph, and the relationship between velocity v on the y-axis, acceleration a (the three green tangent lines represent the values for acceleration at different points along the curve) and displacement s (the yellow area under the curve.)

  6. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    In classical mechanics, for a body with constant mass, the (vector) acceleration of the body's center of mass is proportional to the net force vector (i.e. sum of all forces) acting on it (Newton's second law): = =, where F is the net force acting on the body, m is the mass of the body, and a is the center-of-mass acceleration.

  7. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    There are some notable similarities in equations for momentum, energy, and mass transfer [7] which can all be transported by diffusion, as illustrated by the following examples: Mass: the spreading and dissipation of odors in air is an example of mass diffusion. Energy: the conduction of heat in a solid material is an example of heat diffusion.

  8. Moment (physics) - Wikipedia

    en.wikipedia.org/wiki/Moment_(physics)

    The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().

  9. Variable-mass system - Wikipedia

    en.wikipedia.org/wiki/Variable-mass_system

    At instant 1, a mass dm with velocity u is about to collide with the main body of mass m and velocity v. After a time dt, at instant 2, both particles move as one body with velocity v + dv. The following derivation is for a body that is gaining mass . A body of time-varying mass m moves at a velocity v at an initial time t.