Ad
related to: strain gage datasheet examples chart- Contact Us
experts around the world
just a click or email away
- Shop Online
superior strain gages
Delivered to Your Door
- Products
One-Stop Provider
Stress and Strain Measurement
- Product Catalog
Ultra-High Precision foil resistors
high-precision strain measurement
- Contact Us
Search results
Results from the WOW.Com Content Network
An unmounted resistive foil strain gauge. A strain gauge takes advantage of the physical property of electrical conductance and its dependence on the conductor's geometry. . When an electrical conductor is stretched within the limits of its elasticity such that it does not break or permanently deform, it will become narrower and longer, which increases its electrical resistance end-to-
In constantan strain gauges (the most commercially popular), the effect accounts for 20% of the gauge factor, but in silicon gauges, the contribution of the piezoresistive term is much larger than the geometric terms. This can be seen in the general examples of strain gauges below:
A strain gauge sensor measures the deformation of the elastic element, and the output of the sensor is converted by an electronic circuit to a signal that represents the load. Capacitive strain gauges measure the deformation of the elastic material using the change in capacitance of two plates as the plates move closer to each other.
The strain resistor is bonded with adhesive to an object that is subjected to mechanical strain. With the strain gauge and a filter, amplifier, and analog/digital converter, the strain on an object can be measured. A related but more recent invention uses a Quantum Tunnelling Composite to sense mechanical stress.
Constantan in this form is very ductile; and, in gauge lengths of 0.125 inches (3.2 mm) and longer, can be strained to >20%. It should be borne in mind, however, that under high cyclic strains the P alloy will exhibit some permanent resistivity change with each cycle, and cause a corresponding zero shift in the strain gauge. Because of this ...
Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics , stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...
In mechanics, strain is defined as relative deformation, compared to a reference position configuration. Different equivalent choices may be made for the expression of a strain field depending on whether it is defined with respect to the initial or the final configuration of the body and on whether the metric tensor or its dual is considered.
[1]: 58 For example, low carbon steel generally exhibits a very linear stress–strain relationship up to a well defined yield point. The linear portion of the curve is the elastic region, and the slope of this region is the modulus of elasticity or Young's modulus .
Ad
related to: strain gage datasheet examples chart