enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Specific impulse - Wikipedia

    en.wikipedia.org/wiki/Specific_impulse

    The specific impulse of a rocket can be defined in terms of thrust per unit mass flow of propellant. This is an equally valid (and in some ways somewhat simpler) way of defining the effectiveness of a rocket propellant. For a rocket, the specific impulse defined in this way is simply the effective exhaust velocity relative to the rocket, v e ...

  3. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  4. Payload fraction - Wikipedia

    en.wikipedia.org/wiki/Payload_fraction

    The payload fraction is the quotient of the payload mass and the total vehicle mass at the start of its journey. It is a function of specific impulse, propellant mass fraction and the structural coefficient. In aircraft, loading less than full fuel for shorter trips is standard practice to reduce weight and fuel consumption.

  5. Rocket propellant - Wikipedia

    en.wikipedia.org/wiki/Rocket_propellant

    This relationship is described by the rocket equation. Exhaust velocity is dependent on the propellant and engine used and closely related to specific impulse, the total energy delivered to the rocket vehicle per unit of propellant mass consumed. Mass ratio can also be affected by the choice of a given propellant.

  6. Delta-v budget - Wikipedia

    en.wikipedia.org/wiki/Delta-v_budget

    The Tsiolkovsky rocket equation shows that the delta-v of a rocket (stage) is proportional to the logarithm of the fuelled-to-empty mass ratio of the vehicle, and to the specific impulse of the rocket engine. A key goal in designing space-mission trajectories is to minimize the required delta-v to reduce the size and expense of the rocket that ...

  7. Mass ratio - Wikipedia

    en.wikipedia.org/wiki/Mass_ratio

    v e is the effective exhaust velocity (see specific impulse) m 0 is the initial mass (rocket plus contents plus propellant) m 1 is the final mass (rocket plus contents) This equation can be rewritten in the following equivalent form: = / The fraction on the left-hand side of this equation is the rocket's mass ratio by definition.

  8. Delta-v - Wikipedia

    en.wikipedia.org/wiki/Delta-v

    Delta-v (also known as "change in velocity"), symbolized as and pronounced /dɛltə viː/, as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver.

  9. Jet propulsion - Wikipedia

    en.wikipedia.org/wiki/Jet_propulsion

    Specific impulse (usually abbreviated I sp) is a measure of how effectively a rocket uses propellant or jet engine uses fuel. By definition, it is the total impulse (or change in momentum) delivered per unit of propellant consumed [4] and is dimensionally equivalent to the generated thrust divided by the propellant mass flow rate or weight flow rate. [5]