Search results
Results from the WOW.Com Content Network
AWG is colloquially referred to as gauge and the zeros in thick wire sizes are referred to as aught / ˈ ɔː t /. Wire sized 1 AWG is referred to as "one gauge" or "No. 1" wire; similarly, thinner sizes are pronounced "x gauge" or "No. x" wire, where x is the positive-integer AWG number. Consecutive AWG wire sizes thicker than No. 1 wire are ...
By estimating the temperature of the cables, the safe long-term current-carrying capacity of the cables can be calculated. J. H. Neher and M. H. McGrath were two electrical engineers who wrote a paper in 1957 about how to calculate the capacity of current (ampacity) of cables. [ 1 ]
Comparison of SWG (red), AWG (blue) and IEC 60228 (black) wire gauge sizes from 0.03 to 200 mm² to scale on a 1 mm grid – in the SVG file, hover over a size to highlight it. In engineering applications, it is often most convenient to describe a wire in terms of its cross-section area, rather than its diameter, because the cross section is directly proportional to its strength and weight ...
The current British Standard for metallic materials including wire is BS 6722:1986, which is a solely metric standard, superseding 3737:1964, which used the SWG system. The IEC 60228 , used in most parts of the world, defines standard wire sizes based on their cross-sectional areas as expressed in mm 2 . [ 3 ]
One important property of the insulation which affects the current-carrying capacity of the wire is the maximum conductor temperature. This, in combination with the ambient temperature and ability of the environment to absorb heat, determines the amount of tolerable copper loss in the wire, and therefore its size in relation to the load current ...
For systems such as underground power transmission cables, evaluation of the short-term over-load capacity of the cable system requires a detailed analysis of the cable's thermal environment and an evaluation of the commercial value of the lost service life due to excess temperature rise.
The current density inside round wire away from the influences of other fields, as function of distance from the axis is given by: [6]: 38 Current density in round wire for various skin depths. Numbers shown on each curve are the ratio of skin depth to wire radius. The curve shown with the infinity sign is the zero frequency (DC) case.
The current-carrying capacity, or ampacity, of overhead lines starts with the type of conductor used. The conductor choice determines its electrical resistance and other physical parameters for dynamic line rating (DLR).