Search results
Results from the WOW.Com Content Network
They further indicate the formation of large gyres in the Alboran Sea during the flooding [24] and that the flood eroded the Camarinal Sill at a rate of 0.4–0.7 metres per day (1.3–2.3 ft/d). [28] The exact size of the flood depends on the pre-flood water levels in the Mediterranean and higher water levels there would result in a much ...
The result is the formation of the Mediterranean Water that finally spreads into the interior of the North Atlantic forming the most prominent basin-scale thermohaline anomaly at mid-depths, the Mediterranean Salt Tongue, recognizable as a basin-scale salinity anomaly at 1000–1200 m depth through the North Atlantic (see Figure 2).
As the deep waters sink into the ocean basins, they displace the older deep-water masses, which gradually become less dense due to continued ocean mixing. Thus, some water is rising, in what is known as upwelling. Its speeds are very slow even compared to the movement of the bottom water masses.
Murphy et al.'s 2009 general circulation model experiments [49] showed that for completely desiccated conditions, the Mediterranean basin would warm by up to 15 °C (27 °F) in summer and 4 °C (7.2 °F) in winter, while for a depressed water surface, temperatures would warm by only about 4 °C (7.2 °F) in summer and 5 °C (9.0 °F) in winter.
Water is the medium of the oceans, the medium which carries all the substances and elements involved in the marine biogeochemical cycles. Water as found in nature almost always includes dissolved substances, so water has been described as the "universal solvent" for its ability to dissolve so many substances.
Hereby, northward moving surface water release heat and water to the atmosphere and gets therefore colder, more saline and consequently denser. This leads to the formation of cold deep water in the North Atlantic. This cold deep water flows back to the south a depth of 2–3 km until it joins the Antarctic Circumpolar Current. [27]
The Mediterranean Sea (/ ˌ m ɛ d ɪ t ə ˈ r eɪ n i ən / MED-ih-tə-RAY-nee-ən) is a sea connected to the Atlantic Ocean, surrounded by the Mediterranean Basin and almost completely enclosed by land: on the east by the Levant in West Asia, on the north by Anatolia in West Asia and Southern Europe, on the south by North Africa, and on the west almost by the Morocco–Spain border.
Most studies of formational mechanisms infer some degree of reduced deep-water circulation. Oxygen can only reach the deep sea by new deep-water formation and consequent "ventilation" of deep basins. There are two main causes of OAE: reduction in deep-water circulation or raised oxygen demand from upper level.