enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stellar nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Stellar_nucleosynthesis

    As a result, there is little mixing of fresh hydrogen into the core or fusion products outward. In higher-mass stars, the dominant energy production process is the CNO cycle, which is a catalytic cycle that uses nuclei of carbon, nitrogen and oxygen as intermediaries and in the end produces a helium nucleus as with the proton–proton chain. [22]

  3. Triple-alpha process - Wikipedia

    en.wikipedia.org/wiki/Triple-alpha_process

    As a side effect of the process, some carbon nuclei fuse with additional helium to produce a stable isotope of oxygen and energy: 12 6 C + 4 2 He → 16 8 O + γ (+7.162 MeV) Nuclear fusion reactions of helium with hydrogen produces lithium-5, which also is highly unstable, and decays back into smaller nuclei with a half-life of 3.7 × 10 −22 s.

  4. Nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Nucleosynthesis

    The majority of these occur within stars, and the chain of those nuclear fusion processes are known as hydrogen burning (via the proton–proton chain or the CNO cycle), helium burning, carbon burning, neon burning, oxygen burning and silicon burning. These processes are able to create elements up to and including iron and nickel.

  5. Helium compounds - Wikipedia

    en.wikipedia.org/wiki/Helium_compounds

    Helium is the smallest and the lightest noble gas and one of the most unreactive elements, so it was commonly considered that helium compounds cannot exist at all, or at least under normal conditions. [1] Helium's first ionization energy of 24.57 eV is the highest of any element. [2]

  6. Supernova nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Supernova_nucleosynthesis

    Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...

  7. Period (periodic table) - Wikipedia

    en.wikipedia.org/wiki/Period_(periodic_table)

    There are an almost infinite number of compounds that contain carbon due to carbon's ability to form long stable chains of C—C bonds. [ 16 ] [ 17 ] All organic compounds , those essential for life, contain at least one atom of carbon; [ 16 ] [ 17 ] combined with hydrogen, oxygen, nitrogen, sulfur, and phosphorus, carbon is the basis of every ...

  8. Abundance of the chemical elements - Wikipedia

    en.wikipedia.org/wiki/Abundance_of_the_chemical...

    The Sun's photosphere consists mostly of hydrogen and helium; the helium abundance varies between about 10.3 and 10.5 depending on the phase of the solar cycle; [13] carbon is 8.47, neon is 8.29, oxygen is 7.69 [14] and iron is estimated at 7.62. [15]

  9. Big Bang nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Big_Bang_nucleosynthesis

    Once temperatures are lowered, out of every 16 nucleons (2 neutrons and 14 protons), 4 of these (25% of the total particles and total mass) combine quickly into one helium-4 nucleus. This produces one helium for every 12 hydrogens, resulting in a universe that is a little over 8% helium by number of atoms, and 25% helium by mass. One analogy is ...