Search results
Results from the WOW.Com Content Network
Glycerol is a good alternative source for butanol production. While glucose sources are valuable and limited, glycerol is abundant and has a low market price because it is a waste product of biodiesel production. Butanol production from glycerol is economically viable using metabolic pathways that exist in the bacterium Clostridium pasteurianum ...
However, it is used as a source of hydrogen in some types of fuel cell; it can generate a higher voltage than methanol, which is the fuel of choice for most alcohol-based fuel cells. However, since propanol is harder to produce than methanol (biologically or from oil), methanol-utilizing fuel cells are preferred over those that utilize propanol.
Butanol (also called butyl alcohol) is a four-carbon alcohol with a formula of C 4 H 9 O H, which occurs in five isomeric structures (four structural isomers), from a straight-chain primary alcohol to a branched-chain tertiary alcohol; [1] all are a butyl or isobutyl group linked to a hydroxyl group (sometimes represented as BuOH, sec-BuOH, i-BuOH, and t-BuOH).
Butanol is an alcohol which can be used as a fuel in most gasoline internal combustion engines without engine modification. It is typically a product of the fermentation of biomass by the bacterium Clostridium acetobutylicum (also known as the Weizmann organism).
Alcohols have a long history of myriad uses. For simple mono-alcohols, which is the focus on this article, the following are most important industrial alcohols: [25] methanol, mainly for the production of formaldehyde and as a fuel additive; ethanol, mainly for alcoholic beverages, fuel additive, solvent, and to sterilize hospital instruments. [26]
The production of butanol by biological means was first performed by Louis Pasteur in 1861. [5] In 1905, Austrian biochemist Franz Schardinger found that acetone could similarly be produced. [ 5 ] In 1910 Auguste Fernbach (1860–1939) developed a bacterial fermentation process using potato starch as a feedstock in the production of butanol.
The largest use of 1-butanol is as an industrial intermediate, particularly for the manufacture of butyl acetate (itself an artificial flavorant and industrial solvent). It is a petrochemical derived from propylene. Estimated production figures for 1997 are: United States 784,000 tonnes; Western Europe 575,000 tonnes; Japan 225,000 tonnes. [8]
Isobutanol (IUPAC nomenclature: 2-methylpropan-1-ol) is an organic compound with the formula (CH 3) 2 CHCH 2 OH (sometimes represented as i-BuOH).This colorless, flammable liquid with a characteristic smell is mainly used as a solvent either directly or as its esters.